
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

IMPLEMENTATION OF SECURE 6LOWPAN
COMMUNICATIONS FOR TACTICAL WIRELESS

SENSOR NETWORKS

by

David W. Courtney

September 2016

Thesis Advisor: Preetha Thulasiraman
Co-Advisor: Zachary Staples

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB
No.0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2016

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
IMPLEMENTATION OF SECURE 6LOWPAN COMMUNICATIONS FOR
TACTICAL WIRELESS SENSOR NETWORKS

5. FUNDING NUMBERS

W6A99

6. AUTHOR(S) David W. Courtney

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

Marine Corps Systems Command and Naval Research Program

10.
SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The ability to securely disseminate data in a timely manner is critical to military missions within a
hostile environment. Tactical wireless sensor networks (WSN) consist of power-constrained devices
spread throughout a region-of-interest to provide data extraction in real time. In this thesis, we develop
cyber security mechanisms to be implemented on a tactical WSN using the 6LoWPAN protocol for use by
the United States Marine Corps (USMC). Specifically, we develop an architectural framework for tactical
WSNs by studying cyber security gaps and vulnerabilities within the 6LoWPAN security sublayer, which
is based on the IEEE 802.15.4 standard. We develop a key management scheme and a centralized routing
mechanism that is non-broadcast but feasible in an operational scenario. In addition, we modify the
6LoWPAN enabled IEEE 802.15.4 frame structure to facilitate the newly developed keying and
centralized routing mechanisms. Methods to aid in deployment planning are also discussed. The tactical
WSN architecture was tested against a variety of well-known network attacks. The attacks simulated were
spoofing, man-in-the-middle, and denial-of-service. Through MATLAB simulations, we showed the
effectiveness and efficiency of the developed cyber security mechanisms to provide integrity and
reliability to a deployed tactical WSN.

14. SUBJECT TERMS
Wireless Sensor Networks (WSN), Sensor Nodes, 6LoWPAN, IEEE 802.15.4, energy
constrained node, centralized routing, keying mechanism, network attacks, denial of service
(DOS), man-in-the-middle (MITM), spoofing

15. NUMBER OF
PAGES

255

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN7540–01-280-5500 Standard Form 298 (Rev.2–89)
Prescribed by ANSI Std.239–18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release. Distribution is unlimited.

IMPLEMENTATION OF SECURE 6LOWPAN COMMUNICATIONS FOR
TACTICAL WIRELESS SENSOR NETWORKS

David W. Courtney
Lieutenant, United States Navy

B.S., United States Naval Academy, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2016

Approved by: Preetha Thulasiraman, Ph.D.
Thesis Advisor

Zachary Staples
Co-Advisor

R. Clark Robertson, Ph.D.
Chair, Department of Electrical and Computer Engineering

iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The ability to securely disseminate data in a timely manner is critical to military

missions within a hostile environment. Tactical wireless sensor networks (WSN) consist

of power-constrained devices spread throughout a region-of-interest to provide data

extraction in real time. In this thesis, we develop cyber security mechanisms to be

implemented on a tactical WSN using the 6LoWPAN protocol for use by the United

States Marine Corps (USMC). Specifically, we develop an architectural framework

for tactical WSNs by studying cyber security gaps and vulnerabilities within the

6LoWPAN security sublayer, which is based on the IEEE 802.15.4 standard. We develop

a key management scheme and a centralized routing mechanism that is non-broadcast

but feasible in an operational scenario. In addition, we modify the 6LoWPAN enabled

IEEE 802.15.4 frame structure to facilitate the newly developed keying and centralized

routing mechanisms. Methods to aid in deployment planning are also discussed. The

tactical WSN architecture was tested against a variety of well-known network

attacks. The attacks simulated were spoofing, man-in-the-middle, and denial-of-service.

Through MATLAB simulations, we showed the effectiveness and efficiency of the

developed cyber security mechanisms to provide integrity and reliability to a deployed

tactical WSN.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. LOW POWER WIRELESS SENSOR NETWORKS1
B. INTRODUCTION TO 6LOWPAN/IEEE 802.15.42
C. RESEARCH MOTIVATIONS AND OBJECTIVES3
D. THESIS CONTRIBUTIONS ..6
E. THESIS ORGANIZATION ..7
F. CHAPTER SUMMARY ..7

II. RELATED WORKS ..9
A. ARCHITECTURE OF A TACTICAL WSN ..9
B. ROUTING ..10
C. 6LOWPAN FRAME STRUCTURE ..11
D. SECURITY MECHANISMS ..11
E. CHAPTER SUMMARY ..14

III. THEORETICAL FRAMEWORK FOR SECURITY
ARCHITECTURE ...15
A. NETWORK DESIGN ..15

1. Master Station (MS) ..16
2. Base Station/Border Router (BS/BR) ...17
3. Sensor Node ..18
4. Attack Mitigation for Network Design18

B. COMMAND AND CONTROL (ADMINISTRATIVE
CONTROL) ..19
1. Node Control ..19
2. Centralized Routing ...20
3. Data Transfer / Hidden Node Mitigations23
4. Keying Mechanisms ...27
5. Attack Mitigation for Administrative Control28

C. ENCRYPTION ...28
D. 6LOWPAN ENABLED IEEE 802.15.4 FRAME STRUCTURE29

1. Frame Control (2 Bytes) ..29
2. Source MAC Address / Destination MAC Address (8

Bytes Each) ...29
3. LOWPAN IPHC(2 Bytes)..30
4. Path (2 Bits) /Hop Limit (6 Bits) ...30
5. Initialization Vector (16 Bytes) ...30

 viii

6. Payload (71 Bytes) ..31
7. Message Integrity Code (16 Bytes) ...32
8. Next Header (1 Byte) ...32
9. CRC (2 Bytes Each) ...32

E. TRANSITION ..32
F. DEPLOYMENT OF NODES..32

1. Key Exchange/Routing Table ...33
2. Physical Placement...33
3. Network Connection ..34

G. PROPOSED ATTACKS ...34
1. Spoofing ..34
2. MITM ..35
3. DOS ...35

H. CHAPTER SUMMARY ..35

IV. EXPERIMENTAL SETUP ...37
A. SENSOR PARAMETERS...37
B. NODE CHARACTERISTICS ..39
C. FRAME PARAMETERS ..41
D. NETWORK PARAMETERS ...42

1. Modified CSMA-CA BEB ...42
2. Seed Number ..43

E. SIMULATION PROGRAM ...43
1. Main ..43
2. Run Simulation...44
3. Check For Errors ...44
4. Check Node Status ...44
5. Check For Open Packets ...45
6. New Events ...46
7. Check For Energy Use ...46
8. Attack Modules ..46
9. Display ...48

F. SIMULATION USER FILES ...48
1. Nodes (Create Nodes) ..48
2. Routing Table (Create Routing Table to Master)48
3. Affected Nodes (Create Energy Table)49
4. Events (Create Event Table) ...49

G. SIMULATION LOGS ...49
1. PCAP ...50
2. Open Packets ..50

 ix

3. Node Status ...50
4. Node Status Table ..50
5. Time in Phase ...50

H. CHAPTER SUMMARY ..51

V. SIMULATION RESULTS AND ANALYSIS ...53
A. RESULTS ...55

1. Spoofing ..55
2. DOS ...60
3. MITM ..67

B. CHAPTER SUMMARY ..71

VI. CONCLUSION AND FUTURE WORK ...73
A. SUMMARY AND CONCLUSIONS ..73
B. CONTRIBUTIONS OF THIS THESIS ...74
C. FUTURE WORK ...75

1. Application of Sink Node Anonymity ..75
2. Implementation of the BS ..75
3. Implementation of Cyber Security on a Mobile WSN76

APPENDIX. SIMULATION PROGRAM...77

LIST OF REFERENCES ..227

INITIAL DISTRIBUTION LIST ...229

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Dimensions of the COC (AN/MSC-77) Currently Used by the
USMC. Source: [7]. ...5

Figure 2. Sample Next Header Compression (NHC) Compressed IP/UDP
Packet Secured with ESP. Source: [14]. ..13

Figure 3. Proposed 6LoWPAN Network Design ..16

Figure 4. Centralized Routing Scheme that Depicts the Primary and Secondary
Paths for Each Node...21

Figure 5. Centralized Routing Scheme With a Compromised Node that
Depicts the Changes to the Primary and Secondary Paths of the
Surrounding Devices ..22

Figure 6. Hidden Node Diagram ...25

Figure 7. Network Design Without the Use of Extra Relay Nodes to Illustrate
the Hidden Node Problem ..26

Figure 8. Network Design With the Use of Extra Relay Nodes (Nodes 25 and
26) to Illustrate a Remedy for the Hidden Node Problem27

Figure 9. Proposed 6LoWPAN Frame Structure...29

Figure 10. MADIG Deployment Coverage of an Intersection (Extra Relay
Nodes Providing Coverage to the BS are not Displayed)38

Figure 11. Close up View of the MAGID Deployment Coverage of the Extra
Relay Nodes Used to Funnel Traffic to the BS and Avoid Hidden
Nodes ...39

Figure 12. Assignment of Reference Numbers to the Node of the Tactical WSN......54

Figure 13. Number of Non-Authenticated Frames Received by the MS in Each
of the Five Trials for Scenario 2 Simulating a Spoofing Attack on
Node 16 ..56

Figure 14. Number of Non-Authenticated Frames Received by the MS in Each
of the Five Trials for Scenario 3 Simulating a Spoofing Attack on
Node 16 ..57

 xii

Figure 15. Number of Non-Authenticated Frames Received By the MS in Each
of the Five Trials for Scenario 2 Simulating a Spoofing Attack on
Node 24 ..58

Figure 16. Number of Non-Authenticated Frames Received By the MS in Each
of the Five Trails for Scenario 3 Simulating a Spoofing Attack on
Node 16 ..58

Figure 17. Deployment of a Rogue Node Performing a DOS Attack on Node 561

Figure 18. Frames Transmitted via Secondary Route Per Node (Original Hop)
in Scenario 1 (Vehicular Traffic at 25 mph) for no Attacks and DOS
Attacks at Nodes 5 and 25 ...62

Figure 19. Frames Transmitted via Secondary Route Per Node (Original Hop)
in Scenario 4 (Vehicular Traffic at 65 mph) for no Attacks and DOS
Attacks at Nodes 5 and 25 ...63

Figure 20. Frames Transmitted via Secondary Route Per Node (Follow-on
Hops) in Scenario 1 (Vehicular Traffic at 25 mph) for no Attacks
and DOS Attacks at Nodes 5 and 25 ..64

Figure 21. Frames Transmitted via Secondary Route Per Node (Follow-on
Hops) in Scenario 4 (Vehicular Traffic at 65 mph) for no Attacks
and DOS Attacks at Nodes 5 and 25 ..65

Figure 22. Average Power Draw Per Node in Scenario 1 (Vehicular Traffic at
25 mph) for no Attacks and DOS Attacks at Nodes 5 and 2566

Figure 23. Average Power Draw Per Node in Scenario 4 (Vehicular Traffic at
65 mph) for no Attacks and DOS Attacks at Nodes 5 and 2567

Figure 24. Average Power Draw Per Node in mW When no Attack Occurs and
During the MITM Attack Simulations Between Nodes 7 and 268

Figure 25. Number of Non-Authenticated Frames Received By the MS From
the Originating Node During a MITM Attack Between Nodes 7 and
2..69

 xiii

LIST OF TABLES

Table 1. Phases of Node Operation. Adapted from [20]. ...40

Table 2. Power Draw and Duration Time to Perform AES-128 Encryption.
Adapted from [21]..41

Table 3. Parameters Used for Each of the Four Scenarios that are Simulated49

Table 4. Power Draw in mW for the Spoofing Attacks on Nodes 16 and 2459

Table 5. Average Results of the Five Trials of MITM Attacks Conducted on
Scenario 3...70

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

6LoWPAN IPV6 over low power wide area network

AES Advanced Encryption Standard

AES-CCM Advanced Encryption Standard-Counter with Cipher Block
Chaining-Message Authentication Code

AH Authenticated Header

BEB Binary Exponential Back-off

BS base station

COC combat operations center

CRC Cyclic Redundancy Check

CSMA-CA Carrier-Sense Multiple Access—Collision Avoidance

DOD Department of Defense

DOS Denial-of-Service

ECC Elliptic Curve Cryptography

ESP Encapsulation Security Payload

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPSec IP Security

IV Initialization Vector

LoWPAN low power wide personal area network

LSeND Lightweight Secure Neighbor Discovery for Low-Power and Lossy
Networks

MAGID Magnetic Intrusion Detection

MIC Message Integrity Code

MITM Man-in-the-Middle

MPH miles per hour

MS master station

NHC Next Header Compression

NSA National Security Agency

RPL Routing Protocol for Low Power and Lossy Networks

 xvi

RX-TX receive-transmit

SEND Secure Neighbor Discovery

TCP Transmission Control Protocol

UDP User Datagram Protocol

USMC United States Marine Corps

WSN wireless sensor network

xvii

EXECUTIVE SUMMARY

The Internet of Things (IoT) embraces network connectivity of everyday, low

power sensor devices for two-way data communications. The IoT offers the potential to

extend connectivity to sensor devices and mobile nodes at the tactical edge of the

battlefield at a low cost for the United States Marine Corps (USMC) within their wireless

sensor networks (WSN). A “WSN is a group of sensor nodes that are geographically

distributed to provide data gathering and monitoring of tasks and events” [1]. The

implementation of tactical WSNs empowers the USMC to collect data within areas of

interest.

The IEEE 802.15.4 standard is a physical and data link communication protocol

for low power wireless personal area networks Since the IEEE 802.15.4 standard only

defines the first two layers of the Open Systems Interconnection model, another protocol

must be used to provide full networking functionality for the WSN [2]. The Internet

Engineering Task Force’s (IETF) 6LoWPAN (IPv6 over Low Power Wireless Personal

Area Networks) is a protocol designed to work with the IEEE 802.15.4 standard [2].

Our study into the applicability of a 6LoWPAN enabled IEEE 802.15.4

infrastructure for USMC tactical sensor networking is focused on a structured, multi-hop

static WSN rather than an ad hoc deployment. The objective of this thesis is to provide an

analysis of 6LoWPAN by studying the standard’s ability to 1) provide energy

conservation for the low power devices that are deployed, where the sensors are static;

and 2) implement and use a key management scheme that has the ability to defend

against a variety of cyber attacks. In order to achieve this objective, the vulnerabilities of

the cyber security mechanisms used within 6LoWPAN WSN must be evaluated.

The proposed network design incorporates the following network architecture

elements: master station (MS), base station/border router (BS), and sensor nodes. The MS

serves as the central node of the network providing a universal connection to external

domains and accessibility and administrative privileges to the sensor nodes while located

at a safe remote location away from the WSN. The BS, commonly known as a sink node,

 xviii

is the transitional element within the WSN that connects the 6LoWPAN/internal

environment to the public/external environment.. The sensor nodes are the end elements

designed to attach to multiple types of sensors and to send data to the MS. The

deployment of the devices is similar to that described in [3] but with some modifications

to include the creation of the intended network, connection of the devices to the MS for

bootstrapping, and deployment of the devices.

The MS’s administrative control mechanisms include node control, centralized

routing, and keying mechanisms. Node control from the MS removes the need to send an

individual to make a modification to the BS or sensor for a new task. The centralized

routing mechanism allows the MS to control the routing of the WSN and the current

network status with the implementation of path indication bits. Private keys are generated

using the AES-CCM 128 keying mechanism, where each node has a unique key that is

only shared with the MS, and the BS has a separate keying mechanism shared with the

MS to secure the data over the external domain.

The proposed 6LoWPAN enabled IEEE 802.15.4 frame structure is based on the

structure defined in [4] with header compression schemes. We modified the frame

structure to incorporate the above discussed cyber security mechanisms. The first

modification incorporates the path indication bits within the Path/Hop Limit byte. The

path indication bits identify whether a primary or secondary route is used to transmit data

to the MS. The second modification is the implementation of the AES-CCM 128 keying

mechanism incorporating the use of an initialization vector and the message integrity

code (MIC).

The experimental setup used to perform network simulations using MATLAB

allows us to mimic multiple frames transiting the network at one time. The sensors in all

simulations were the Magnetic Intrusion Detector (MAGID) described in [3]. We

simulated the deployment of sensors along a two-lane intersection. There were four

scenarios simulated, each representing a different speed of the vehicles traversing an

intersection. These speeds are 25 miles per hour (mph), 35 mph, 45 mph and 65 mph.

Simulated within these environments are three different types of attacks: spoofing, man-

in-the-middle (MITM), and denial-of-service (DOS), each using a different method of

 xix

execution to exploit vulnerabilities within a network. Throughout the simulation, the

phase transitions of the nodes and frames were documented for further analysis.

The network within the simulation program incorporated a modified carrier-sense

multiple access-collision avoidance with binary exponential back-off (CSMA-CA BEB)

protocol designed specifically for the nodes within this thesis. The network topology used

in the simulation is shown in Figure 1, where a reference number is given to each node in

the figure. Many nodes have a primary and secondary route to send traffic, and each node

makes a determination of which route to use. A decision to use the secondary route by

one node does not imply the next node in the path also uses the secondary route. The

nodes selected for each attack remain the same for all scenarios to allow for comparisons

between the different network environments. Each scenario had six different network

implementations with five trials/simulations per implementation. A total of 30 trials were

conducted for each scenario, resulting in a total of 120 trials for the program.

 Figure 1. Assignment of Reference Numbers to the Nodes of the Tactical WSN

The purpose of the spoofing attack was to test the efficacy of the MIC security

mechanism added to the IEEE 802.15.4 6LoWPAN enabled frame. The MS was

successfully able to perform an analysis on frames received to determine if there was a

possible spoofing attack within the WSN and to determine which node to remove from

the WSN to prevent further attacks, as illustrated in Figure 2.

 xx

 Figure 2. Number of Non-authenticated Frames Received by the MS in Each of the
Five Trials for Scenario 2 Simulating a Spoofing Attack on Node 16

The DOS attack was used to determine if the centralized routing scheme and the

use of the path indication bits would be able to detect an attack or incapacitated node.

The analysis presented in Figure 3 displays the use of the secondary routes, indicating

possible congestion or a node malfunction, causing the WSN to operate in a non-optimal

manner. Specifically, during the DOS attack on node 5, node 11 had an increase of

frames utilizing the secondary route due to node 5 becoming incapacitated.

 Figure 3. Frames Transmitted via Secondary Route per Node (Original Hop) in
Scenario 4 (Traffic at 65 mph) for No Attacks and

DOS Attacks at Nodes 5 and 25

 xxi

Similar to the spoofing attack, the analysis performed on the MITM attack was

focused on the implementation of the MIC security mechanism but also the centralized

routing mechanism using the path indication bits. The results shown in Figure 4 validated

the MIC security mechanism’s ability to authenticate valid frames sent by the nodes. The

MS was then able to determine where the attack was occurring and which nodes to

remove from the WSN.

 Figure 4. Number of Non-authenticated Frames Received by the MS from the
Originating Node during a MITM Attack between Nodes 7 and 2

The combination of the cyber security mechanisms implemented within this thesis

reflect positive results from a cyber security aspect. The use of the MIC provided

integrity to the WSN by preventing the authentication of 100% of the frames received by

the MS in either the spoofing or MITM attacks. The use of the centralized routing scheme

ensured the WSN remained functional and reliable even when one of the two nodes

connecting the BS to the rest of the WSN was disabled during the DOS attack. The

implementation of the indication bits within the centralized routing scheme enabled

detection of congestion within the network resulting from either traffic density or an

incapacitated node. We conclude that the cyber security mechanisms developed and

network structure defined provide a foundation on which future tactical WSNs used

within the USMC can be based.

 xxii

References

[1] K. White and P. Thulasiraman, “Energy efficient cross layer load balancing in
tactical multigateway wireless sensor networks,” in Proc. Of IEEE International
Inter-Disciplinary Conference on Cognitive Method in Situation Awareness and
Decision Support, 2015, pp. 193–199.

[2] J. Granjal, E. Monteiro, and J. Sa Silva, “Security for the Internet of things: a
survey of existing protocols and open research issues,” in IEEE Communication
Surveys & Tutorials, vol. 17, pp. 1294–1312, Third Quarter, 2015.

[3] Unattended Ground Sensor Set AN/GSQ-257 Technical Manual, TM 09632A-OI,
Washington, DC: U.S. Marine Corps, 2008.

[4] S. Raza, S. Duquennoy, and G. Selander, “Compression of IPsec AH and ESP
Headers for Constrained Environments” (Draft), pp. 1–10, 2013, Sept. 2013.

 xxiii

ACKNOWLEDGMENTS

Most importantly, I would like to thank my wife, Adrienne, for all of the support

she has given me throughout this entire process.

I would also like to thank my thesis advisor, Professor Preetha Thulasiraman, for

taking me under her wing and pushing me to reach my goals.

 xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The Internet of Things (IoT) embraces network connectivity of everyday, low

power sensor devices for two-way data communications. The IoT offers the potential to

extend connectivity to sensor devices and mobile nodes at the tactical edge of the

battlefield at a low cost. In this thesis, we study the security of specific IoT protocols

such that they can be used at the tactical edge by the United States Marine Corps

(USMC) within their wireless sensor networks (WSN).

A. LOW POWER WIRELESS SENSOR NETWORKS

A “WSN is a group of sensor nodes that are geographically distributed to provide

data gathering and monitoring of tasks and events” [1]. Sensor devices collect and

transmit data to a centralized controller, also known as a base station. WSNs can be used

in a variety of industrial, commercial and military applications. In recent years, WSNs

have become integral to all parts of life and continue to evolve as technology advances.

The use of WSNs has continuously grown and are becoming fully integrated within

commercial systems as well as our homes. Due to the growth of WSNs and the increased

reliability of the devices used, a WSN is an attractive intelligence gathering system to the

Department of Defense (DOD). The implementation of a WSN provides the ability to

remotely collect intelligence on an area-of-interest, eliminating hazardous manpower

requirements. In addition, a WSN can be used to remotely “monitor deployed systems

and trigger alerts at a command and control site when certain events occur” [1]. The

implementation of tactical WNSs empowers the DOD to cost effectively collect

reconnaissance data within critical areas-of-interest, increasing the DOD’s intelligence

gathering capabilities.

The deployment of tactical WSNs in remote regions requires that the sensor nodes

function independently. In order to function for a period of time without manual support,

the sensor devices must have their own power supply as a permanent electrical

infrastructure might not be readily available. To meet the low energy consumption

requirement that extends the life expectancy of the device and, thereby, the network as a

 2

whole, WSNs have been designed to use a minimal amount of power to perform a desired

task.

Tactical WSNs have been used within the military during conflicts in multiple

ways. During the Vietnam War, WSNs were first deployed to detect movement along the

Ho Chi Minh Trail in Operation IGLOO WHITE [2]. The deployed sensors were

designed to perform a range of detections to include sensing truck noises and body heat.

The devices were also designed to blend in within the jungle environment by appearing to

be a part of the vegetation. Operation IGLOO WHITE was determined to be a great

success as WSNs, used in combination with US Air Force bombers, accounted for 90%

of the destruction of equipment that was transported down the Ho Chi Minh trail.

The WSN devices in use today by the USMC for tactical networking are known

as the AN/GSQ-257, Unattended Ground Sensor Set. The AN/GSQ-257 devices are part

of the USMC’s Tactical Remote Sensor System and have multiple configurations that

enable sensing of seismic/acoustic, magnetic, and/or infrared data [3]. This is helpful in

performing perimeter enemy detection and tracking enemy movements. The use of a

WSN allows the USMC to remove the human element from possible danger while

maintaining situational awareness with early detection from a remote location; however,

the limitations of these sensor devices include 1) physical attributes, the weight and size

of these sensors are considerably higher than commercial sensor nodes, and 2) limited

ability to airdrop, sensors with seismic sensing capability may be air dropped whereas all

other sensing functions are only available if the sensors are hand placed. Embracing the

technological advancements of sensor and sensor communication over the past 20 years

will enable the USMC to modernize their network infrastructure.

B. INTRODUCTION TO 6LOWPAN/IEEE 802.15.4

One of the advantages of a sensor device is its ability to be deployed within harsh

environmental conditions without a dedicated power supply. Since sensors are

traditionally low power devices, a different type of communication protocol that

conserves energy within the wireless environment needs to be used. The IEEE 802.15.4

standard is a physical and data link communication protocol for low power wireless

 3

personal area networks (LoWPAN). LoWPAN is commonly used in embedded

applications for real-time data extraction covering a large geographic area requiring the

use of many sensor nodes [4]. The sensor nodes within the LoWPAN need to be low cost

as well as able to operate unattended, use typical batteries, and communicate over

multiple hops [4].

Since the IEEE 802.15.4 standard only defines the first two layers of the Open

Systems Interconnection model, another protocol must be used to provide full networking

functionality for the WSN [5]. The Internet Engineering Task Force’s (IETF) 6LoWPAN

(IPv6 over Low Power Wireless Personal Area Networks) is a protocol designed to work

with the IEEE 802.15.4 standard [5]. Both IEEE 802.15.4 and 6LoWPAN are specifically

tailored for IoT applications [5]. 6LoWPAN is an open standard networking technology

that standardizes Internet connectivity for low power wireless sensor networks. It alters

the landscape by allowing “IPv6 packets to be carried efficiently within link layer frames,

such as those defined by IEEE 802.15.4” [6] while reducing Internet Protocol (IP)

overhead. This low overhead is achieved using cross-layer optimizations. “A powerful

feature of 6LoWPAN is that while originally conceived to support IEEE 802.15.4 low

power wireless networks, it is now being adapted and used over a variety of networking

media including Bluetooth and Wi-Fi” [6]. By connecting to an IP based infrastructure,

low power wireless networks are then connected to other IP networks and devices via IP

routers. 6LoWPAN takes advantage of the well-developed end-to-end IP infrastructure,

providing open standards and interoperability [6].

C. RESEARCH MOTIVATIONS AND OBJECTIVES

As the use of WSNs grows in the USMC, they will become more attractive to

potential attackers. In order to prevent a passive or active cyber attack, multiple security

methods must be implemented to maintain an efficient and effective WSN.

Comprehensive defense security mechanisms must account for multiple types of attacks.

Generally, to defend against an attack, the military develops a defense model for the

attack. Since there are multiple types of attacks, the military has developed multiple

models to defend against each case. The development of a single model to defend against

 4

a variety of attacks prevents the need for an expanded arsenal of defense models, saving

the military manpower.

The USMC has high interest in WSNs and their ability to connect to a public

domain. Currently, when their WSN devices are deployed in the field, they are deployed

with a base station, known as AN/MSC-77, which contains working spaces for two

individuals [7]. The AN/MSC-77 is also known as the Combat Operations Center (COC).

The COC includes a dedicated power source to provide the power necessary to run all of

the equipment within it. The COC must be placed in the vicinity of the WSN devices

unless a repeater is used to place the unit further away, but the COC must again retain a

line-of-sight with the repeater. The size of the COC is a concern since it is a large unit, as

shown in Figure 1, and can be easily seen by an enemy. The current WSN used by the

USMC requires the COC to be located near the deployed network even with the use of

repeaters; thus, an enemy can generally avoid the area to evade detection. The current

data flow from legacy equipment and sensor devices lacks automation. In order for the

USMC to obtain the data from the WSN, an individual must physically go to the COC

and extract the necessary information, as the COC does not transmit the data acquired

from the WSN.

To facilitate seamless data delivery to and from the sensor devices, the network

must be connected to another secure domain using a comprehensive communication

protocol. The use of 6LoWPAN will significantly improve the information flow as it

currently exists by allowing multiple operators in a unit to access sensor information

despite their location. IP based information can be easily used to inform the situational

awareness and common operational picture of the engaged unit.

The feasibility of using 6LoWPAN for the operational information flow scenario

described above is based on its ability to do two things: 1) provide for secure energy

conserving communications with regard to the limited power devices that operate over

the network and 2) provide secure communications by improving upon the security

sublayer currently utilized by IEEE 802.15.4. The ability to communicate using

6LoWPAN is meaningful only if physical and cyber security considerations are in place.

 5

 Figure 1. Dimensions of the COC (AN/MSC-77) Currently Used by the USMC.
Source: [7].

In this thesis, we provide cyber security solutions for 6LoWPAN that pair with

and enable current commercial sensor technology to be employed in austere and/or

hostile environments to support USMC operations in a secure and energy conserving

manner.

Our study into the applicability of a 6LoWPAN enabled IEEE 802.15.4

infrastructure for USMC tactical sensor networking is focused on a structured, multi-hop,

static WSN rather than an ad hoc deployment. The objective of this thesis is to better

 6

understand the feasibility and effectiveness of 6LoWPAN in an operational scenario. To

this end, the aim is to provide an analysis of the 6LoWPAN standard by studying the

standard’s ability to 1) provide energy conservation for the low power devices that are

deployed, where the sensors are static and 2) implement and use a key management

scheme that has the ability to defend against a variety of cyber security attacks that could

cause the WSNs to become inefficient and/or ineffective. In order to achieve this

objective, the vulnerabilities of the cyber security mechanisms used within 6LoWPAN

WSN is evaluated. A focus on cyber security gaps and vulnerabilities within the security

sublayer, a key management scheme that is non-broadcast but also feasible within an

operational scenario, is determined. Finally, the effectiveness of the selected key

management scheme on different threat models is assessed.

D. THESIS CONTRIBUTIONS

To address the objectives stated above, we developed a theoretical network design

framework for a multi-hop WSN that uses 6LoWPAN and IEEE 802.15.4 such that it can

be deployed for tactical operations by the USMC.

The contributions of this thesis are as follows:

 Development of a command and control (administrative control) structure
of the tactical WSN that incorporates node control, a unique
defined/centralized routing model, and a selected keying mechanism for
data confidentiality, authentication and integrity.

 Construction of a modified 6LoWPAN enabled IEEE 802.15.4 frame
structure to incorporate the unique centralized routing model and selected
keying mechanism.

 Enhancement of methods to aid in the deployment planning of the secured
tactical WSN to prevent critical vulnerabilities.

 Simulation and evaluation of the proposed network framework against
multiple attacks and testing for security robustness and energy
conservation.

It must be noted that parts of this thesis have already been published by the author

at the time of this writing [8].

 7

To the best of our knowledge, this is the first work that actively studies the secure

implementation of a 6LoWPAN enabled IEEE 802.15.4 WSN for USMC operations.

E. THESIS ORGANIZATION

The remainder of this thesis is organized as follows. The related literature

focusing on security within 6LoWPAN is outlined in Chapter II. The theoretical

framework of the proposed tactical WSN model, including modifications to the frame

structure, the routing scheme and keying mechanism, is discussed in Chapter III. The

basis and rationale of the experimental setup as well as the threat models tested against

the developed tactical WSN are explained in Chapter IV. The simulation results and

analysis are given in Chapter V. The conclusion and topics for future work are proposed

in Chapter VI. All the code created and used for the implementation of the network,

testing models and raw simulation results are provided within the Appendix.

F. CHAPTER SUMMARY

In this chapter, we provided an introduction and overview of WSNs,

6LoWPAN/IEEE 802.15.4 and their applicability within USMC tactical operations. The

motivations and objectives of this research were discussed, followed by an outline of the

thesis contributions.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. RELATED WORKS

There is an existing foundation of research in the literature that aims to achieve

security and energy conservation within a WSN [9]. In this thesis, we focus on

developing specific energy conserving security measures for a tactical WSN. To that end,

we study specific tactical WSN architectures, routing mechanisms, the 6LoWPAN frame

structure and related cyber security mechanisms. In the following sections, we examine

current research relating to these areas to provide a basis for the work in this thesis.

A. ARCHITECTURE OF A TACTICAL WSN

The architecture determines how the network is physically deployed and how the

nodes are interconnected with one another. It also determines the types of devices to be

used within the network and their functions. There has been work published on tactical

WSNs that serve as a foundation for our work [10], [11]. A specific view of a tactical

WSN architecture was taken in [10] for the deployment of the network in a large scale

environment. The authors proposed an architectural design based on a cluster-tree

network with multi-hop capability [10]. The cluster-tree design groups nodes into

clusters, and a node is selected to act as a cluster head. The election of the cluster head is

based on a node’s residual energy level [10]. The role of the cluster head is rotated

among the nodes throughout the lifespan of the deployed tactical WSN, thereby

conserving nodal energy. In addition, because the network is multi-hop, it allows the

network to scale to a large environment.

The architecture model developed in [10] was also used in the model developed

by [11], which applied the 6LoWPAN protocol. The protocol architecture for the

deployed nodes was separated into five protocol layers. Each layer was examined,

detailing the functions and techniques used within the layer. The IEEE 802.15.4 standard

was determined to be a suitable protocol for the physical and MAC layers [11]. While

detailing the adaptation and network layers, the authors of [11] assumed that the nodes

would be randomly deployed, requiring the nodes to perform a self-organizing function

through address auto-configuration. Other functions that were discussed include routing

 10

protocols, header compression, fragmentation, and energy saving [11]. Within the

transport and application layers, the authors used a military application management

entity that contains a military operations profile specifically defining parameters required

for tactical deployment [11]. While [10] and [11] provide architectural constraints for

tactical WSN deployment, cyber security mechanisms and its relationship to energy

consumption was not discussed.

B. ROUTING

Multiple methods of routing in a WSN exist, each of which is geared toward

achieving a specific purpose such as energy conservation, low delay, or high throughput.

A unique routing approach was taken in [9] where the objective was to conceal the sink

node due to its high value as a target for an enemy attacker. In order to keep the sink node

concealed, a routing algorithm was proposed that obfuscated the sink node’s location

within the deployed network, reducing the risk of attack while preserving the node’s

energy levels. While the algorithm provided an anonymity mechanism to conceal the sink

node within the network, a cyber security mechanism for the network communications

using encryption and authentication was not provided. The proposed routing mechanism

within [1] focused on the development of an energy efficient cross-layer load balancing

and routing algorithm called EZone. With the application of the EZone routing protocol,

the network lifetime was maximized; however, the EZone algorithm does not provide a

mechanism for secure communications.

In [5], the Routing Protocol for Low Power and Lossy Networks (RPL), which

uses routing control messages, was proposed as a routing mechanism for networks of low

power devices. “RPL is an end-to-end routing solution based on IPv6 communications

and is specially adapted for the needs of specific types of traffic flow” [12] and is capable

of supporting control messages on multiple network architectures [5]. One of the

disadvantages of RPL is that the protocol focuses on attacks that occur externally to the

network rather than internally to the network [5]. The ability to provide a method of

control over the routing scheme within the network is a form of security. This type of

 11

administrative control over the routing of data is a strategic decision that is applied within

this thesis.

C. 6LOWPAN FRAME STRUCTURE

In order to develop a feasible, secure design for tactical WSNs using 6LoWPAN,

it is necessary to understand its frame structure. The composition of a 6LoWPAN frame

was given in [13]. Given that the packet is reduced to a size of 127 bytes, some header

information has been either removed or compressed. Two of the fields within the header

that underwent significant compression were the IP addresses for the source and the

destination nodes. 6LoWPAN offers two types of addressing modes where the IP address

is either used in its entirety or is compressed. The compressed address mode offers the

administrator an option to reduce the IPv6 address from 128 bits (16 bytes) to 16 bits (2

bytes), which saves 14 bytes per address, saving a total of 28 bytes [5]. The authors of

[13] also demonstrate the implementation of a Compressed IPSecurity (IPSec) packet

proposed in [14], which uses a UDP packet structure within the 6LoWPAN frame. The

combination of the different compression methods and the implementation of compressed

IPSec within the 6LoWPAN frame is the underpinning of our proposed frame structure in

this thesis.

D. SECURITY MECHANISMS

A survey on security for the IoT was conducted in [5], which went into detail on

the security vulnerabilities of the IEEE 802.15.4 standard in concert with the 6LoWPAN

protocol. Within the IEEE 802.15.4 standard, the authors of [5] discussed different

security mechanisms depending on a prescribed vulnerability. The model proposed in [5]

included the use of approved security modes, an access control list, and time

synchronization to limit vulnerabilities, reducing the number of potential internal attacks;

similar security mechanisms were used in [15]. The authors of [15] also provided greater

detail on the potential attacks that could be used at each layer of the 6LoWPAN stack.

Encryption within the 6LoWPAN environment is a requirement in order to have

an effective tactical WSN. Encryption has been addressed in the most recent release of

the IEEE 802.15.4 standard [5], [15]. Multiple encryption modes are presented for use,

 12

and the challenge is for the researcher to determine what mode best fits the intended

tactical WSN application. Along with encryption, there is a method to ensure data

authentication called a Message Integrity Code (MIC). Again, the researcher must

determine the size of the MIC needed and if the payload can sacrifice the bits needed to

implement the integrity mechanism. Knowing how encryption methods operate helps

determine which one to use to defend against a variety of attacks. Advanced Encryption

Standard-Counter with Cipher Block Chaining-Message Authentication Code (AES-

CCM) is the suggested method within the 6LoWPAN standard [5]. Within the encryption

method, an Initialization Vector (IV) is used. The combined fields within the IV provide

a unique value to be used along with the encryption key, creating a unique encrypted

payload for each transmitted packet. The keys for encryption are either public or private.

Public and private shared keys both have positive and negative aspects. The application

determines the type of key to be used.

An adaptation of the 6LoWPAN enabled IEEE 802.15.4 infrastructure developed

in [14] incorporates the use of encryption over the typical IP infrastructure using IPSec.

IPSec is the protocol suite used for IP communications to encrypt and authenticate IP

packets. The IPSec suite is an immense protocol; thus, the full implementation of IPSec is

inefficient within the 6LoWPAN enabled IEEE 802.15.4 infrastructure. The authors of

[14] proposed a method to reduce the overhead within the IPSec protocol while

maintaining the protocol’s core capabilities. IPSec on the typical IP infrastructure uses

two types of headers, the Authenticated Header (AH) and the Encapsulation Security

Payload (ESP) header. The AH provides authentication of who sent the packet but the

data is not encrypted, whereas in the ESP header, the data is encrypted, providing

confidentiality to the transmitted data. Additionally, both the AH and ESP headers can be

used together within the same packet. The information fields required for the AH and

ESP headers are able to be incorporated within the already used header compression for

the IP address and the Next Header field. The Next Header is an 8-bit field that identifies

the next type of header immediately following the IPv6 header. The 6LoWPAN packet

structure including the fields of the compressed header is shown in Figure 2. The

proposal by [14] further examines different types of encryption methods to be used

 13

within the ESP packet, including some of the security modes within the IEEE 802.15.4

standard.

 Figure 2. Sample Next Header Compression (NHC) Compressed IP/UDP Packet
Secured with ESP. Source: [14].

The final type of security mechanism to be discussed is Neighbor Discovery.

Neighbor Discovery is a method of finding neighboring nodes through which the newly

added node can route messages. Neighbor Discovery is a known vulnerability of

6LoWPAN networks [5]. The vulnerability lies in verifying if the neighbor is a node that

is authorized to access the WSN. Multiple methods have been proposed to deal with this

vulnerability, including a Lightweight Secure Neighbor Discovery for Low-power and

Lossy Networks (LSeND) addressed in [14] as well as a variety of methods presented in

[5]. Methods presented in [14] include RFC 6775-”Neighbor Discovery Optimization for

 14

6LoWPAN,” RFC 4861-”Neighbor Discovery for IPv6,” and an adaptation of RFC 3971-

”SEcure Neighbor Discovery (SEND).” Given the complexity and known vulnerabilities

of having a Neighbor Discovery protocol, limiting the capabilities of the network by

disabling Neighbor Discovery mitigates both the complexity and vulnerabilities of the

deployed WSN.

E. CHAPTER SUMMARY

In this chapter, some of the current research pertaining to the methods used for the

implementation of four main elements within the tactical WSN were discussed. Also

demonstrated is that an abundance of research exists on WSNs in general, but work that

focuses on a deployed 6LoWPAN tactical network that is secure and uses a multi-hop

infrastructure is limited. Due to the limited research, 6LoWPAN is a focal point for

further exploration within tactical WSNs.

 15

III. THEORETICAL FRAMEWORK FOR
SECURITY ARCHITECTURE

In this chapter, we discuss the theoretical framework for the design and

implementation of a 6LoWPAN enabled tactical WSN using IEEE 802.15.4. This

theoretical framework is developed with a focus on the cyber security mechanisms that

are required for tactical deployment. We discuss 1) the network design, including the

network devices used and their purpose, 2) the command and control (i.e., Network

administration) parameters of the WSN, which detail specific tactical characteristics

within the network (i.e., data routing and key management), and 3) the type of encryption

and authentication algorithm used for the transmitted data. The network design,

administrative privileges and encryption and authentication of the network are the three

main components of the security architecture for the tactical WSN. We then discuss the

6LoWPAN enabled IEEE 802.15.4 frame structure and the modifications that are made to

the frame in order to deal with the cyber security considerations discussed. We also

discuss recommendations for the deployment of the WSN for USMC tactical operations.

Finally, the three types of cyber security attacks to be performed against the network are

discussed. These attacks are used as an evaluation tool for the security architecture that is

developed and is discussed further in Chapters IV and V.

A. NETWORK DESIGN

The proposed network design includes multiple elements, each serving a specific

purpose. The elements included within the network architecture are as follows: master

station (MS), base station/border router (BS), and sensor nodes. In the following sections,

a description of each element is provided along with its intended use. In addition, the

cyber security mechanisms associated with each network element are also provided along

with assessments on attack mitigation. The proposed network architecture is shown in

Figure 3 and is based on a typical mesh network.

 16

 Figure 3. Proposed 6LoWPAN Network Design

1. Master Station (MS)

The MS serves as the central node of the network, as depicted in Figure 3. The

proposed MS is a modified AN/MSC-77 (COC) currently used by the USMC but with

modifications. As discussed in Chapter I, the typical USMC COC/MS unit must be

within the line-of-sight of the WSN devices. Due to its large size, a typical COC/MS

cannot be easily concealed. Rather than place the MS within the austere environment in

which tactical WSNs are typically deployed, we position the MS in a structured, fortified

military base, away from the tactical WSN region-of-interest, making it easier to protect.

The proposed MS provides accessibility and administrative privileges to the sensor nodes

while located at a safe, remote location away from the WSN. The MS has the ability to

connect to each node within the internal domain since each element within the WSN

supports two-way communication links. The MS can also connect to other servers outside

of the WSN in order to disseminate data and populate other operator databases. When

 17

connected to other servers and databases, the data becomes accessible to remote

operators, including those deployed within the WSN’s environment. The MS also

provides the operator a secure position to manage and control the WSN while extracting

data from the sensor nodes. The flow of information proposed in this thesis does not

require USMC personnel to rely on physically retrieving the stored data.

Cyber security mechanisms for the MS have already been developed and tested

throughout the military (i.e., security mechanisms for the COC are well known). The MS

will not be operating within the 6LoWPAN network environment but will be able to

decipher the encrypted payloads sent to it from a 6LoWPAN device. As a security

measure, the encrypted payloads are the only method of communication between the

nodes and the MS.

2. Base Station/Border Router (BS/BR)

The BS is the transitional element within the WSN that connects the

6LoWPAN/internal environment to the public/external environment. This is also

commonly known as a sink node. The proposed BS is a secured router that transmits the

data received from the sensor nodes into an external domain. The BS receives frames

from the sensor nodes and removes unnecessary 6LoWPAN header information. It

reassembles the payload into the compatible external network frame structure in order

transit to the MS. The BS performs the same task in the reverse direction, removing

unnecessary frame headers and adding the appropriate 6LoWPAN header to send the

frame to the sensor nodes. Within the 6LoWPAN environment, the BS converts the

addresses between the internal and external network environments since 6LoWPAN uses

a modified addressing mode. The BS does not interfere with the payload because it is

encrypted. The BS only contains the necessary encryption in order to connect to the MS;

therefore, the frame payload to be transmitted remains secure. The actual transition of

frames from one domain to the other is not the focus of this thesis and is not discussed at

length.

The BS is restricted to 63 hops from the furthest node since the hop limit field

within the frame structure consists of only six bits. The hop-limit field is further

 18

discussed in Section D. Since the BS connects the WSN to an external network, it

requires either a dedicated electrical supply, a generator, or robust battery supply as more

power is needed to transmit a signal strong enough to reach the external domain. The BS

is also able to withstand the harsh environments in which it is deployed and is much

smaller than the COC since it does not need to have workstations available within the

unit. The smaller size of the BS also allows it to be concealed more easily within the

deployed environment. The BS should also contain anti-tamper technology to prevent

physical modifications or reverse engineering of the device. Anti-tampering is already

implemented on deployed USMC sensor devices [3]. We assume that the same tamper

proof mechanisms can be implemented on the BS as well.

3. Sensor Node

The sensor nodes are the end elements. Each node is designed to attach to

multiple types of sensors and to send data to the MS for compilation and analysis. The

node is assumed to have the sensor capabilities as described in [3], including which

sensors can be connected and which modes of operation are offered. The nodes have the

ability to withstand the harsh environment and the capability to relay frames to the

intended destinations. The node remains at its deployed location in order to maintain a

static network. This facilitates our ability to sustain its continued connection to the MS

and to monitor each node’s energy use. The sensor nodes communicate with the MS only

through encrypted payload routed through the BS. The nodes are deployed and contain

anti-tamper physical security measures as noted in the USMC manual [3].

4. Attack Mitigation for Network Design

Vulnerabilities associated with the design of this tactical WSN include single

points-of-failure and physical protection of the sensor nodes. The MS and BS are single

points-of-failure to the WSN, and if removed, the network is no longer accessible and

unable to be used. A denial-of-service (DOS) attack exploits this type of vulnerability.

The MS has a greater impact on the WSN since it provides reachability, accessibility, and

administrative privileges to the sensor nodes. The BS can be replaced by another BS

without affecting the encryption or payload data transmission between the nodes and MS.

 19

The vulnerability of the MS and BS is not the focus of this thesis, but the military does

have similar devices in place today. Lastly, the physical protection of the nodes and BS

remains an accepted risk. The deployed nodes will be able to detect an enemy

approaching since the sensors can detect threatening events. The ability to sense

potentially hostile events allows the sensor nodes to report suspicious data before

becoming compromised, and if compromised, the node is removed by the MS to prevent

further corruption within the WSN. In the end, the node is still able to perform the job it

was deployed to do by detecting the enemy’s presence even if it becomes compromised.

B. COMMAND AND CONTROL (ADMINISTRATIVE CONTROL)

The administrative control aspects of the WSN are critically related to its

functionality as well as the implementation of its cyber security mechanisms. In this

thesis, the cyber security mechanisms that are implemented enable only the necessary

features required for the WSN to function. These mechanisms are controlled by the MS.

The control mechanisms of the MS include node control, centralized routing, and keying

mechanisms. Using a centralized entity, such as the MS, to perform these functions, we

limit attacks on the network.

1. Node Control

The MS maintains a directory of all of the networks connected to the BS as well

as the sensor nodes within each network. The sensor nodes in the network are controlled

by the MS via encrypted payload. The encrypted payload contains information that

includes when the node provides real-time coverage or when the node stores detected

events and transmits them in bulk at a later time [3]. Since all of the control messages are

encrypted within the payload, the encryption provides the ability to securely control each

node. The control of each node is limited to the MS. The MS serves as a centralized

controller of all network functions. This centralization of control removes the need to

send an individual to make a modification to the BS or sensor for a new task; instead the

node can be adjusted immediately from the MS. In the event a node is in the process of

being compromised, the MS can remove the node from the network as well as reset the

node to delete its cryptographic and routing information, preventing the enemy from

 20

obtaining any data. The ability to remove the node either before, during, or after it has

been compromised is a mitigating factor to the risks of a node deployed in a hostile

environment.

2. Centralized Routing

As has been stated, the MS contains a directory of all nodes connected in the

network. The MS implements centralized routing functions by controlling each sensor

node’s routing table. In the network, data is either routed upstream, from the sensor node

to the MS, or downstream, from the MS to the sensor nodes. For upstream data, each

sensor node is only able to route data to two neighboring sensor nodes; each node has a

primary path to the MS through one neighbor and a secondary path to the MS through the

second neighbor. Exceptions to this include sensor nodes that are directly connected to

the BS or when a sensor node is deployed to a location in which only one other node

(neighbor) is within its wireless range. The sensor node also performs in the same manner

downstream, but the limitation of two nodes is not enforced in order to compensate for

network expansion. This gives the MS the ability to implement energy cost saving

measures within the network by adjusting the routing scheme to alleviate the workload of

drained nodes. Controlling the frame flow within the network is also a way to protect the

network from outside attacks by not receiving and routing frames from invalid sources.

The centralized routing scheme allows the MS to add new nodes to the network

by adding the new node’s address information into the neighboring node’s routing table

via the encrypted payload. The MS also adds the necessary routing table information to

the new node during the network setup. This method prevents the need for a neighbor

discovery protocol, which is noted as a vulnerability within 6LoWPAN [5], [15]. The MS

can also remove compromised or expired nodes by removing the node from the

neighboring nodes’ routing tables; thus, any data sent from the obsolete node(s) is not

routed.

An example of the centralized routing scheme of deployed sensors at an

intersection is shown in Figure 4. An intersection was used as an example since these

devices track not only personnel but tanks or other manned vehicles [3]. The sensors are

 21

not limited to deployment at an intersection as they may also be deployed along a

perimeter of a base or along a path of intended traffic. If an anomaly within the traffic

flow occurs, it may mean an impending attack or an attack by the enemy is already

underway within the area. To provide full coverage of an intersection, sensors are placed

on each side of the road. The primary and secondary routing paths are marked, with every

node having a secondary path except for the nodes with a direct link to the BS.

 Figure 4. Centralized Routing Scheme that Depicts the Primary and
Secondary Paths for Each Node

As discussed within the description of the MS, administrative control of the nodes

is performed by the MS via encrypted payloads. If a node were to become compromised,

the MS edits the nearby nodes’ routing tables via the encrypted payloads and then

removes the compromised node from the network. An example of a compromised node

and the adjustments made to the primary and secondary paths of the surrounding devices

 22

is shown in Figure 5. In Figure 5, node 17 is the compromised node. The centralized

routing scheme is adjusted to not allow a frame to be transmitted to or from the

compromised node (node 17) as it is no longer in the routing tables of any node within

the WSN. The routing adjustments depicted in Figure 5 include nodes 12, 13, 16, 18 and

21. Each of these nodes loses its secondary routes, thereby limiting its ability to transmit

to only one other node. Essentially, all paths that contain node 17 are removed, thereby

isolating the compromised node. The adjustments in the routing path force some nodes to

assume additional traffic loads, but the WSN is able to remain effective until the

compromised node is repaired or replaced.

 Figure 5. Centralized Routing Scheme With a Compromised Node that Depicts the
Changes to the Primary and Secondary Paths of the Surrounding Devices

 23

3. Data Transfer / Hidden Node Mitigations

A mechanism to transport data between nodes needs to be determined; however,

the transporting mechanism to be used within an energy constrained environment must

limit the creation of new network traffic. The authors of [14] use the User Datagram

Protocol (UDP) as the basis of their packet structure, which in turn is the basis of the

frame structure employed in this thesis. Unlike the Transmission Control Protocol (TCP),

UDP does not use a handshake dialog for connection establishment and does not transmit

acknowledgements for packets received. This allows the transfer of data to occur much

faster and with less overhead [16]. UDP also supports broadcast, multi-cast, and

unidirectional communications. We focus on unidirectional UDP communications as it is

better suited for the keying mechanism that is developed and used in this thesis. We

discuss this further in the next subsections.

As mentioned above, UDP is a connectionless, best-effort mechanism used to

route network traffic. This means that the sending nodes do not receive confirmation that

the transmitted frame was correctly received [16]. To provide assurance that frames are

received correctly within an unreliable transport protocol (i.e., UDP), we use a unique

implicit acknowledgement detection mechanism. This unique implicit detection

mechanism operates as described in the following paragraphs.

As previously mentioned, the communication links between the nodes are

reciprocal; therefore, each node is able to see the next-hop transmission of the frame.

This confirms that the frame was properly received without errors and forwarded. If the

sending node does not see the next-hop node’s transmission, the sending node determines

the frame needs to be retransmitted and performs the retransmission after the

predetermined back-off period. If the transmitting node is forwarding to a relay node to

funnel the traffic to the BS, a small random increment of time (seed number) is added to

the back-off period. The predetermined back-off period is similar to carrier-sense

multiple access-collision avoidance (CSMA-CA) with binary exponential back-off (BEB)

in which the time between retransmissions doubles after each failed transmission attempt

[17]. The seed number is applied in order to prevent repeated attempts at transmitting a

frame at the same time as a neighboring node. If the sending node does not see the

 24

transmission of the frame from the follow-on node after four re-transmissions, the

sending node repeats the same process with the node designated in the routing table as

the secondary route.

The primary advantage to using an implicit acknowledgment detection

mechanism is the ability to ensure that a frame was received by the next-hop node

without the extra network traffic required to set up sessions or send feedback control

messages (acknowledgement frames) as used by other types of protocols. Essentially, this

implicit acknowledgement detection mechanism takes advantage of the listening

capability that each node has to detect transmissions within its transmission range. A

disadvantage to this mechanism is the possibility of the originating node detecting the

transmission of the follow-on node, which is transmitting a previously received frame

from another node. The receiving node then uses the transmitted frame by the follow-on

node as confirmation of a successful receipt.

This implicit acknowledgement detection mechanism cannot be applied to the

nodes next to the BS as a result of the BS’s transition and subsequent transmittal of the

frame into the public domain. The neighboring nodes of the BS is not able to detect the

follow-on transmission the BS makes since it is beyond the node’s capabilities. With the

assumption that the BS has a dedicated power supply, the BS is continuously awake and

ready to receive any frame sent to it. All of the traffic within the network is then funneled

into the nodes surrounding the BS, which increases the network traffic. By limiting the

BS’s neighboring nodes to one transmission per frame, we reduce the possibility of

congestion. With the increase in traffic density of the BS’s surrounding nodes, hidden

nodes also become a factor to consider. A hidden node scenario is illustrated in Figure 6,

where node A and C are not able to detect each other’s transmission while transmitting to

node B; therefore, node A is hidden to node C and vice versa. Hidden nodes within the

network also create congestion because transmissions can collide, causing the received

frame to be corrupted.

 25

 Figure 6. Hidden Node Diagram

In order to mitigate hidden nodes near the BS, extra relay nodes are used to funnel

the traffic toward the BS, thereby removing possible hidden nodes from around the BS. A

network implementation without the use of the extra relay nodes to funnel the network

traffic is shown in Figure 7. Nodes 1 through 4 can transmit to the BS; however, nodes 1

and 2 cannot see node 4 and nodes 3 and 4 cannot see node 1, creating a hidden node

problem. If nodes 1 and 4 transmitted at the same time, a collision would occur, and the

frame would be lost. The use of utilizing extra relay nodes within the vicinity of the BS to

avoid hidden node problems is shown in Figure 8. Within the network design and prior to

deployment, the BS is moved further away from nodes 1 through 4 to allow for the

addition of nodes 25 and 26 to the network. The BS is then far enough away to not be

affected by nodes 1 through 4 and can only see nodes 25 and 26, while node 25 can only

see 1, 2, 26 and the BS and, similarly, node 26 can only see nodes 3, 4, 25 and the BS.

Nodes 25 and 26 are now functioning as a relay/sensing node and can see each other

within the network. Since the extra relay nodes can see each other, the nodes do not

transmit at the same time, preventing collisions from occurring at the BS. Also since

nodes 25 and 26 are extra relay sensing nodes, they are able to concentrate on sensing the

area around the BS to provide further physical security to the high value device.

 26

One final modification was made to the delay in time between the first and second

transmissions of a node. The first transmission is typically used to wake-up the receiving

node, which affects the implementation of the BEB protocol. Traditionally, the BEB

waits zero or one time slot before attempting a first transmission. Thereafter, the wait

time doubles (two slots, four slots, eight slots, etc.) before each re-transmission. In our

implementation, the BEB is modified as follows. A node waits 6.0 ms after the first

transmission before trying to re-transmit. The transmitting node does not know if the

next-hop node is awake, thus this time permits the next-hop node to wake-up in

preparation to receive the incoming frame for the second retransmission. The BEB begins

after the second transmission but with an initial back-off time delay of 10.0 ms which

then doubles after each successive unsuccessful attempt to transmit to the follow-on

node. Thus, in our implementation, back-off times between the first and second

transmissions do not follow the typical BEB delay of zero or one time slots; doubling of

wait time does not occur until after the second transmission.

 Figure 7. Network Design Without the Use of Extra Relay Nodes
to Illustrate the Hidden Node Problem

 27

 Figure 8. Network Design With the Use of Extra Relay Nodes (Nodes 25 and 26)
to Illustrate a Remedy for the Hidden Node Problem

Each node has the ability to store frames that cannot be successfully forwarded.

After a period of time, the node repeats the same process to forward the stored frame. By

waiting a period of time without retransmitting, the node does not add to network

congestion, thereby reducing possible collisions or delays. This is a capability already

demonstrated within [3] in its ability to store all events and transmit them at a specified

time given by the network administrator.

4. Keying Mechanisms

A keying mechanism is needed to protect the information being transported

between the nodes and the MS. Multiple keying mechanisms may be implemented, such

as a private keying mechanism, in which each node has its own unique key, or a public

keying mechanism, in which each node has both a private key specific to each node and a

public key that is shared between all of the nodes. Previous research from [5] determined

that after evaluating the energy requirements of public keying, private keying is the most

efficient method to encrypt the payload. Public keying was also determined to have

vulnerabilities, including an increase in transmissions throughout the network to update

the keys. The focus of this thesis is to evaluate a non-broadcast key management method;

 28

therefore, individual frames are also used to disseminate each key update, creating more

transmissions and, in turn, increasing energy use.

With the use of a private key, each node has a unique key that is only shared with

the MS. As mentioned previously, the BS does not have any of the encryption keys

shared between the nodes and the MS, but the BS does have a separate keying

mechanism shared with the MS. The external network and, specifically, the keying

mechanism for the external network are already in use in other areas within the military

and is not the focus of this thesis.

5. Attack Mitigation for Administrative Control

Administrative control allows for mitigating factors if the WSN has nodes that are

attacked via man-in-the-middle (MITM) or DOS. Each of these attacks requires an

individual or remote device to be near the WSN, but the attacker is detected prior to

performing the attack due to the sensing capabilities of the sensor node as previously

mentioned above [3]. The centralized routing scheme prevents the intruder from further

infecting and draining the rest of the network’s power resources. Use of a keying

mechanism also protects the data during transportation over the network; therefore,

MITM or spoofing attacks are not able to change any of the data nor are they able to

eavesdrop.

C. ENCRYPTION

Multiple encryption algorithms based on private keying are available. The

algorithms include the Advanced Encryption Standard (AES), Elliptic Curve

Cryptography (ECC), and RSA. Each encryption method is authorized by the National

Security Agency (NSA), which sets the encryption standards for the Department of

Defense and establishes key lengths for various classification levels [18]. The most recent

IEEE 802.15.4 standard lists eight security modes ranging from no encryption (one

mode) to different versions of AES (seven modes) [5]. As a result, AES is used as the

keying mechanism in this thesis. The seven modes of AES boast different levels of

encryption and authentication. Since the devices being used can be located within a

hostile environment and are interacting with government networks, the highest levels of

 29

security are required within the WSN; therefore, the data must be encrypted and

authenticated. To meet these requirements, AES-CCM with 128 bit keys is used as the

keying mechanism to provide confidentiality, integrity, and authentication. It is shown

that the selected encryption method also protects against MITM and spoofing. The

keying mechanism is further discussed in the next section.

D. 6LOWPAN ENABLED IEEE 802.15.4 FRAME STRUCTURE

The proposed 6LoWPAN enabled IEEE 802.15.4 frame structure is shown in

Figure 9 and is based on the structure defined in [14] with header compression schemes.

In this thesis, we modified the frame structure to incorporate the previously discussed

cyber security mechanisms. The fields within the frame structure are defined in the

following subsections.

1. Frame Control (2 Bytes)

This field has been defined by the 802.15.4 standard [13].

2. Source MAC Address / Destination MAC Address (8 Bytes Each)

This field has been defined by the 802.15.4 standard [13].

 Figure 9. Proposed 6LoWPAN Frame Structure

 Bytes 1 2 3 4

LOWPAN IPHC (2 Bytes) Path/Hop Limit

Flags Frame Counter

Source Port

Source Port Length of IP Header

Next Header

MIC (16 Bytes)

CRC

Source IP Address

Frame Control

Destination IP Address

LOWPAN NHC

Source MAC Address (8 Bytes)

Destination MAC Address (8 Bytes)

Frame Counter (4 Bytes)

Destination Port

Payload (71 Bytes)

 30

3. LOWPAN IPHC(2 Bytes)

This field has been defined by RFC 6282 [19] with no changes made.

4. Path (2 Bits) /Hop Limit (6 Bits)

The proposed centralized routing mechanism defined in this thesis limits the

direction each frame can take to reach the BS from the transmitting node. This

mechanism is a modification from the proposed frame structure in [14]. We use the

Path/Hop Limit field in the following manner. The Path/Hop Limit field is a total of eight

bits (one byte). Within the Path/Hop Limit byte, the first two bits are used to help the MS

determine if there is an issue with a node routing frames. Specifically, the first two bits

are used individually to determine whether the frame was transmitted over a primary or

secondary route. The second bit is used only by the source node. In the event the primary

route is used to send the frame, the bit is 0. If the secondary route is used, then the bit is

1. The same method is applied to the first bit and is used by all nodes except the

originating node. When the MS receives the frame, it is known if a node was not able to

transmit to a designated primary node. Depending on the modes of operation selected, the

MS may be able to determine which node may be off line or compromised instead of

waiting for a response or detection. The final six bits limit the number of hops a frame

can take to 26–1, or 63 hops. Limiting the number of hops to 63 does not present an issue

since the nodes adjacent/neighboring to the BS are not able to support a large network of

nodes. In other words, we want to maintain energy efficiency within the network. By

reducing the possible number of hops within the network, we provide battery relief to

those nodes, particularly those near the BS, that have to transmit data regularly.

5. Initialization Vector (16 Bytes)

The IV is used to help protect against replay attacks and is also used in the CCM

process to encrypt the payload [5]. The IV is shown as the shaded portion of the frame in

Figure 9. To prevent replay attacks, the IV is a combination of unique identifiers. These

identifiers include a frame counter (four bytes), source and destination IP address (two

bytes each), source and destination port address (two bytes each), flags (one byte), and

length of packet (one byte). The combination of these parameters is unique and prevents

 31

duplicate IVs; in addition, an IV cannot be repeated during the life of the network. The

sequence number field has been removed from the frame structure originally given in

[14].

a. Source IP Address / Destination IP Address (2 Bytes Each)

The addresses are in the compressed 16-bit mode, thus incurring smaller overhead

as described within [14].

b. LOWPAN NHC(2 Bytes)

This field is defined by RFC 6282 [19] with no changes made.

c. Flags (1 Byte)

This field is reserved for the originating source and each bit is designated by the

administrator of the WSN.

d. Frame Counter (4 Bytes)

The field keeps track of the sequential order of frames sent; therefore, a separate

sequence number field outside of the IV is not required.

e. Source Port /Destination Port (2 Bytes Each)

These fields have no changes or compression modifications [14].

f. Length of IP Header (1 Byte)

This field is reduced to one byte since the maximum frame size is 127 bytes.

6. Payload (71 Bytes)

The payload is the amount of data that can actually be transmitted. The data is

encrypted, providing confidentiality during data transmission using the combination of

the IV and the AES-CCM 128 bit key.

 32

7. Message Integrity Code (16 Bytes)

To provide authentication and integrity, a MIC is created within the AES-CCM

mode of encryption and is attached to the end of the frame. The MIC is a hash unique to

the packet and is used to verify that no changes were made to the original message. The

MIC provides another layer of protection against any attack that tries to inject or change

data being transmitted.

8. Next Header (1 Byte)

This is used in higher layers and remains unchanged [14].

9. CRC (2 Bytes Each)

This field has no changes or compression modifications [14].

E. TRANSITION

As previously mentioned, the transition of the frame from one domain to the other

must be completed by the BS. Since the 6LoWPAN frame contains information that the

MS needs to properly assess the effectiveness and efficiency of the WSN, the BS must

transfer information from the necessary fields of the 6LoWPAN frame to the frame used

on the external domain. Fields needed by the MS include the Path, IV, Payload, Next

Header, and MIC. Not included in the IV but needed by the MS to analyze the route

taken within the WSN are the path indicator bits; however, this field is only required

when the BS is transitioning a frame from the WSN to the MS. The path indicator bits are

not required when making the transition from the MS to the WSN since the nodes

deployed within the WSN do not have the capability to perform that type of analysis.

F. DEPLOYMENT OF NODES

The deployment of the WSN is similar to [3] but with some modifications. It is

proposed to first create the intended network, then connect the devices to the MS, and

finally deploy the devices. Creating the network first requires setup of the key exchange

for encryption purposes, the routing table to be loaded, and evaluation of ideal physical

 33

placements for the nodes. The administrator determines the physical location of the node

within the designated network.

1. Key Exchange/Routing Table

After the network is designed and all of the routing tables have been constructed,

the information for each node needs to be transferred to the node and BS. Each node and

BS is physically connected to the MS for bootstrapping. The private key for the device

and the constructed routing table is transferred to the node and BS. The routing table is

transferred to the nodes by the MS to enable the nodes to connect to the network. The key

exchange consists of a private key that is only shared between the MS and the node. The

physical transfer of each unique key exists to prevent an enemy from gaining access to an

entire network’s information simply by obtaining the key from one node. By using a

private key unique to each node, the enemy only has access to that node’s information.

This also allows the MS to remove the node from the network by adjusting routing tables

of surrounding nodes without compromising the rest of the network. Using a key also

allows the MS to perform other security procedures, including resetting the node

completely before it is compromised, thus preventing the enemy from obtaining

information stored on the node.

2. Physical Placement

While connected, the MS is able to maintain a geographical map of deployed

nodes and map the deployment of any new node. This helps determine if the pending

placement of the new node is able to connect to surrounding nodes. This is critical to the

deployment of the WSN since it helps track enemy movements and position. Since the

MS is also able to compile data from all deployed nodes, this allows the data to be

utilized by more entities. For example, warning messages can be automatically

disseminated to surrounding units if a certain threshold is met, alerting them of enemy

activity within the area.

 34

3. Network Connection

Since the physical location of the node is known and the surrounding nodes

within reach, the placement of the nodes within the network can be determined. The MS

can then add the node to the desired network. If the node can be added to multiple

networks, then the MS must determine which network is the most energy efficient

network to add the node.

G. PROPOSED ATTACKS

Three different types of attacks are conducted in the simulated environment:

spoofing, MITM, and DOS. Each attack uses a different method of execution and exploits

different vulnerabilities within a network, but as previously reviewed, the implemented

cyber security mechanism can either prevent or lead to the detection of an attack, which

triggers the deployment of mitigation methods that maintain the integrity of the network.

The attacker in each of the following scenarios is assumed to be an experienced hacker.

Under this assumption, the attacker knows what MAC and IP addresses to use within the

injection frame as well as the key used for the cyclic redundancy check (CRC); however,

it is assumed that knowledge of the pre-shared key between the node and the MS is not

known.

1. Spoofing

Spoofing is simulated by a rogue node pretending to be a legitimate node within

the network. To conduct the attack, a device is required to be within range of the next-

hop node. The frame is then transmitted to the next-hop node to increase the probability

that it will traverse the network. Operating under the assumption that the attacker is

experienced, the frame successfully reaches the MS. The MS then examines the frame

and determines the frame is not authentic since the MIC does not match, therefore

dropping the frame. The MS also records the node the frame was from for future

comparison. After multiple frames have been received, the MS can analyze the results

and determine if there is a rogue node within the network. The actions of the rogue node

can be mitigated by removing the node that was initially spoofed, denying all traffic sent

by either of the nodes.

35

2. MITM

A MITM attack is simulated by placing a node between two network nodes.

When a network node transmits a frame, the attacking node intercepts and changes the

data within the frame before transmitting the original frame to the next-hop node. The

frame still transits the network and reaches the MS. The MS examines the frame and

determines it is not authentic while recording the result within its logs. Since a MITM

attack affects more than one node, it is assumed that the MS can rapidly determine that a

rogue node has invaded the network. The neighboring nodes affected by the attacking

node can then be removed from the network.

3. DOS

A DOS attack is the disruption of services to a specific node within the network.

To simulate a DOS attack on a node, a continuously transmitting rogue node is placed

near a network node. This keeps the affected node constantly receiving from the rogue

node, which prevents the network node from transmitting any detected events or

forwarding any frames from other nodes. Using the path indicator bits within the frame,

the MS can determine where the disruption is occurring and modify the networks routing

tables to mitigate the disabled node.

H. CHAPTER SUMMARY

Within this chapter technical, physical and administrative controls were discussed

in order to provide a secure networking environment for a deployed tactical WSN. The

physical infrastructure of the network design was discussed along with technical controls

for each element within the design. To provide administrative controls over the deployed

tactical WSN, a centralized routing mechanism is used in conjunction with a route

indicator (path bits). A modified implicit detection mechanism is also implemented to

provide assurance of transmitted frames between nodes. Next a keying mechanism was

selected to provide confidentiality, integrity, and authentication to the information sent.

In order to implement the proposed network design, centralized routing mechanism, and

keying mechanism, the frame structure was modified and discussed. Finally, in order to

36

deploy a secure, tactical WSN, the preparation of the tactical WSN was discussed and

critical steps were recommended.

37

IV. EXPERIMENTAL SETUP

In this chapter, we discuss the experimental setup used to perform network

simulations using MATLAB. These simulations test the efficacy of the cyber security

mechanisms implemented in the theoretical framework. We start by describing the

characteristics of the sensor nodes used in the simulations, the phases of operation of

each sensor node and the frame parameters. We then describe the network parameters in

relation to the simulation. Lastly, we discuss the simulation program including the

different WSN modules that were developed, the required user files, and the simulation

logs.

A. SENSOR PARAMETERS

The sensor-node attachment for the purpose of detecting events is not the focus of

this thesis; however, some detection parameters are assumed in order to have a fully

functioning network simulation. The sensors in all simulations are the Magnetic Intrusion

Detector (MAGID) described within [3]. This sensor is designed to detect large vehicles

such as tanks and small vehicles as well as individuals; although, detection ranges vary

depending on the power level being used and the element size.

During the simulations, sensors are set on a low power setting and emplaced

along a two-lane intersection. The deployment of the nodes with an attached MAGID are

shown in Figure 10. The low power setting has a maximum range of 15.0 m for the

detection of vehicles, whereas the maximum range for the detection of individuals is 4.0

m [3]. The ranges are illustrated by the ellipses in Figure 10 to exhibit the detection areas

of the deployed sensors. The extra relay nodes near the BS are not shown in Figure 10

since the focus of the figure is to illustrate sensor coverage.

38

 Figure 10. MADIG Deployment Coverage of an Intersection (Extra Relay Nodes
Providing Coverage to the BS are Not Displayed)

As mentioned in Chapter III, the extra relay nodes are used to funnel the network

traffic to the BS and prevent hidden nodes. In addition, the extra relay nodes provide

coverage to the WSN’s only single point of failure, the BS. A close up view of the BS,

demonstrating how the extra relay nodes function together as a sensing node and the

resulting coverage is shown in Figure 11.

39

 Figure 11. Close-up View of the MAGID Deployment Coverage of the Extra Relay
Nodes Used to Funnel Traffic to the BS and Avoid Hidden Nodes

B. NODE CHARACTERISTICS

Each node transitions between multiple phases of operation/execution. The

various phases of node operation along with the amount of power (in mW) that is used at

each phase and the duration of each phase (in ms) are outlined in Table 1. These metrics

identify the amount of time and energy used by the node to perform its functions in the

simulations. The duration times shown in Table 1 were adopted from [20]; however, we

rounded these times to the nearest millisecond because the simulation program we

developed is based on one millisecond increments.

The Receive-Transmit (RX-TX) requires the node to switch from receiving to

transmitting in order to transmit the frame and then switch back to receiving; thus, the

execution of transmitting a frame requires two RX-TX phases, one to switch from

40

receiving to transmitting and two to switch from transmitting to receiving. The RX-TX

phase within [20] has a period of 0.4 ms, which totals 0.8 ms during the transmission and

receiving process of a frame. Since our simulation program’s smallest increment in time

is 1.0 ms, 0.8 ms is rounded to 1.0 ms and is used to represent the two RX-TX switching

phases detailed in Table 1.

To complete a frame transmission, the node must execute the following phases,

totaling a period of 7.0 ms: CSMA, RX-TX switch, transmit, and RX-TX switch.

 Table 1. Phases of Node Operation. Adapted from [20].

Multiple logs record the status of the node throughout the lifespan of the network.

One log only records each time a node transitions from one phase to another, while

another log tracks the status in which the node is currently, and a third log is used to

record the node’s time in phase by the millisecond. The node’s status logs are critical

since they are used by multiple modules within the simulation program. The node’s status

logs include the expiration time for the phase in which the node is to prevent the node

from performing/entering another phase. In most simulation programs, detailed status

change logs and current node status logs are not available to the researcher, limiting a

researcher’s ability to troubleshoot any errors. As this network is meant to be deployed

by the USMC, the ability to troubleshoot is imperative; thus, we provide the researcher

with the pertinent logs. These logs are further discussed in Section G of this chapter.

Within [20], encryption was not addressed. We assumed encryption was not

incorporated into the power and time metrics given in Table 1; therefore, we incorporated

Phase Power Draw Duration

Wakeup 20 mW 1 ms

Pre‐process 24 mW 4 ms

CSMA‐CA 72 mW 2 ms

Transmit 90 mW 4 ms

Receive 72 mW 4 ms

RX‐TX switch 54 mW 1 ms

Post‐Process 24 mW 1 ms

Waiting 72 mW Varies

Go to Sleep 20 mW 1 ms

41

the time and power draw for encryption into the simulation. In [21], metrics for various

brands of sensor nodes performing multiple methods of encryption with varying key sizes

are given. To give the best results, we chose to use the TelosB platform since it is more

power efficient [21]. Within the TelosB platform, we used the power draw and times

obtained from the implementation of AES 128 to match our WSN model. The power

draw and time metrics with AES 128 incorporated are shown in Table 2.

 Table 2. Power Draw and Duration Time to Perform
AES-128 Encryption. Adapted from [21].

The nodes within the simulation are only awake for the time period in which there

is activity. If a node does not have any activity for 25.0 ms, it transitions to the sleep

phase. The duration of 25.0 ms was chosen to compensate for transmissions occurring

when the node is processing a received frame from a node that is hidden from the

transmitting node. The duration of 25.0 ms accounts for the time between the third and

fourth transmissions, CSMA-CA, and both the RX-TX switch phases between actual

transmissions of a frame, allowing the follow-on node to see the retransmission before

entering its sleep phase.

There may be instances when the transmitting node cycles through both the

primary and secondary routes without a confirmation of the next hop node transmitting

the frame. In this situation, the transmitting node stores the packet and waits 1.0 s plus a

seed number between 1 and 200. This provides enough time for the network to clear any

data congestion, transmit all the frames to the BS, and allow all the nodes to enter their

sleep phase.

C. FRAME PARAMETERS

As with a node, the frame also transitions through multiple phases. The phases

include creation (unprocessed), transmission, processing, and completion. A log is also

42

maintained, which tracks the status of the frame as it transitions between phases. Within

the log, a phase expiration is attached to each node’s entry and coincides with the

duration metrics used for the nodes.

D. NETWORK PARAMETERS

As previously discussed, the network implements a modified CSMA-CA BEB

protocol with an additional seed number added to the BEB for frames transiting from the

neighboring nodes to the BS. The primary focus of this section is to discuss the modified

CSMA-CA BEB and the parameters used. We also discuss the addition of the seed

number for the nodes forwarding traffic to the BS via an extra relay node.

1. Modified CSMA-CA BEB

CSMA-CA BEB is a protocol that determines a set time period between

transmissions of the same frame to avoid collisions with other transmissions from other

nodes. Once the initial time period is determined, each retransmission doubles the

previous time period between the transmitted frames [17]; however, this model is used

within the IEEE 802.11 standard and assumes that each node is awake and receiving the

frame [17]. Within the simulated network, when the nodes are no longer forwarding or

sensing other events, they go to sleep to conserve energy. This sleep feature requires the

transmitting node to send a frame to wake-up the next hop node. Even though it only

takes 1.0 ms for a node to wake up, the transmitting node must take into account that the

next-hop node might already be awake and receive the frame successfully; thus, the time

the transmitting node must wait before beginning the second transmission process is 6.0

ms, which permits receipt of the next-hop node’s transmission.

After the second transmission, the typical BEB takes place with the initial back-

off period of 10.0 ms, then 20.0 ms after the third transmission and 40.0 ms after the

fourth transmission. If forwarding of the frame has not been detected after completing the

fourth transmission, the transmitting node switches the frames next-hop destination to the

secondary route. The transmitting node then performs the same sequence again while

simultaneously adjusting the designated path bits within the header.

43

2. Seed Number

The CSMA-CA BEB protocol also provides a method to alleviate network

congestion in the node by retransmitting at different set time intervals [17]. To prevent

the occurrence of two nodes transmitting at the same time near the BS, a seed number

between 1.0 and 4.0 ms is added to the back-off time. The seed number creates disparity

between the back-off times between transmitting nodes. With the application of the seed

number, neighboring nodes that initially transmit at the same time has a smaller

probability of retransmitting at the same time since each node applies a random seed

number to the BEB. This helps mitigate congestion caused by collisions as the network

begins to taper to the BS.

E. SIMULATION PROGRAM

To replicate the network, the simulation must be able to mimic multiple frames

transiting the network at one time. Multiple parts of the network must also be able to

function simultaneously. Given these factors into consideration, the driving mechanism

of the program is time based. For every iteration, each function is cycled through the

network while logs track each node’s status, time in phase, frame status, and the creation

of new events within the network. In the following subsections, the different modules that

were programmed in MATLAB to deal with the various network functions performed

within the simulated environment are discussed.

1. Main

The cornerstone of the simulation program is the module, Main. In Main, the

network is created when multiple modules assign user supplied files to simulate an

already deployed network. The files contain the routing table, node addresses, events to

simulate, and empty logs for the simulation. Logs created within the simulation include a

PCAP log, a transiting packets log, and each node’s time in phase log. Within the Main

module, the researcher may select which event table to use during the simulation. The

event table provides sensor detections which simulates a series of real-life events that

trigger a node to create a frame which is subsequently transmitted to the MS. Main is also

where the researcher can select the type of attack and determine which node the attack

 44

targets within the network. This information is then used by the other modules within the

simulation program.

2. Run Simulation

Within Run Simulation, the timer begins at 0.0 ms and increases by 1.0 ms after

cycling through all functions. The timer appends a 10.0 s cushion after the last event to

ensure the network is clear and all retransmissions have been completed. Without an

added cushion, the nodes within the network are not able to complete all phases; the time

cushion ensures the network is free from active packets. Once the simulation time is

computed, the simulation begins cycling through the major functions 1.0 ms at a time.

These functions mimic multiple aspects of the network, which including detecting

collisions, ensuring the nodes and frames transition to the next phase, the creation of new

packets due to a triggered event, and the tracking of the nodes phase status to calculate its

total power draw.

3. Check For Errors

The Check For Errors module is one of the sub modules within the Run

Simulation module. It cycles through all open frames within the network. The module

specifically looks for nodes that are transmitting and compares them to a precompiled list

of nodes that affect the receiving node. If a neighboring node of the receiving node is also

transmitting, a collision occurs and data is not correctly received. The affected frames are

then marked with an error and are not successful during the processing of the frame,

resulting in retransmission from the transmitting node.

4. Check Node Status

The next sub module within the Run Simulation module is the Check Node Status

module. This module performs the necessary transitions to ensure each node transitions

to its next phase at the appropriate time as the nodes within the network cycle through

different phases. The Check Node Status module checks the node’s current status and

compares the phase expiration time within the log and the current time. If the phase

expiration time is reached, the node’s status is changed by removing the node from its

 45

current phase and placing it in a waiting phase; this allows the node to transition into

another phase in the following modules. Multiple logs are maintained to record each

phase transition of the nodes; however, the transition is not yet recorded in the time in

phase log since the node may transition into another phase in later modules.

5. Check For Open Packets

The Check For Open Packets is also a sub module contained within the Run

Simulation module. It cycles through all of the active or open frames within the network,

checking the phase expiration times attached to each frame. When the phase expiration

time of the frame is over, the next phase to be executed for the frame is initiated. This

module is used to perform the processing of a new or received frame and transmit the

packet. Before executing the next phase, the node status is also checked to ensure the

node is available to perform the next phase of the frame. The following are sub modules

contained within the Check For Open Packets module.

a. Transmission

The main function of the Transmission module is to simulate the frame’s

transmission within the network. The module checks the neighboring nodes to determine

if one is transmitting by listening to see if the channel is clear, a key piece of the CSMA-

CA protocol implemented within the simulation. After determining the neighboring

nodes are not transmitting, the node then transitions into a transmitting state. At this

point, the transmitting node transitions and the module cycles through all of the

neighboring nodes while performing the necessary node transitions.

b. Processed Received Packet

The Processed Received Packet module contains a simulation of bit errors in

which one bit error is inserted for every 100,000 bits. The bit errors are executed by a

function that randomly inserts the bit error, so this has the potential to occur anywhere

within the frame. The frame is then checked for the correct addresses, and the frame’s

CRC is calculated and compared to the transmitted CRC to determine if any errors were

observed. The CRC code was obtained from [22] and modified to fit the CRC length

46

required by the network. If the frame passes all of the checks, the frame’s header is

appended with the addresses required for the next transmission.

6. New Events

The New Events module (also a sub module of the Run Simulation module)

checks the event table for the established time threshold at which event detection occurs.

Once the time threshold is reached, a data frame is created. To prevent skipping over the

triggered detection, the simulation references the frame’s status log, which ensures that

the frame cycles through each phase along with the affected node. The encryption of the

frame and the appending of the MIC are also performed within this module. The code for

the encryption was obtained from [23] and modified to perform both the encryption as

well as MIC within the simulation. Finally, the module checks the status of the triggered

node to determine if and when the transition must take place. The New Events module

must be the last transitioning stage due to the fact that the node continues until it has

completed the current process before entering the waiting phase.

7. Check For Energy Use

At the end of every cycle within the Run Simulation module, each node’s current

status is tallied and entered into the node time in phase log. This log is then utilized to

determine the power draw for each node during the simulation timeframe.

8. Attack Modules

There are three different types of attacks conducted within the simulation

program, and each has its own module. Subsections of code have been added within the

other modules to facilitate simulation of the following attacks.

a. Spoofing

In the spoofing attack, the node selected by the researcher is imitated, and spoofed

frames are injected into the network at the next-hop node. The intent of the spoofed node

within this thesis is to inject frames with incorrect information while blending in with

network traffic. To blend in with the network traffic, the frame injection occurs when the

47

receiving node is still awake, which can be done by the rogue node observing the

receiving node’s transmission behavior. By only injecting when the node is awake, we

can infer that an event detection has occurred within the WSN. Since the injected frame

transits at nearly the same time as the traffic generated from valid transmissions, the

injected frame does not stand out. Considering the frames are injected when the receiving

node is awake, the number of injected frames is dependent on the receiving node’s

activity and varies between each simulation trial.

To simulate the rogue node’s monitoring of the receiving node, the rogue node

checks the receiving node’s status every 100.0 ms. If the receiving node’s status is in the

waiting phase and none of the neighboring nodes are transmitting, the rogue node injects

a frame. After injecting the frame, the rogue node does not perform another injection

until 1.0 s later.

b. DOS

In the DOS attack simulation, the researcher selects a node to be affected. To

simulate the attack, a rogue node that is constantly transmitting frames is placed near the

desired node and noted by the researcher within the transmission file. The rogue node’s

continuous transmission forces the receiving node’s status to stay in the receiving phase.

While in the receiving phase, the affected node does not perform any other functions

within the network, rendering the node incapacitated.

c. MITM

The MITM attack requires the researcher to select two neighboring nodes since

the attack occurs during the frame transmission. Once the nodes are selected by the

researcher, a frame sent by an affected node is changed prior to the processing of the

receiving node. The change of the frame between the transmission and processing phases

simulates a rogue node between the two nodes performing a MITM attack. Unlike the

Spoofing module, the MITM attack is performed on each transmitted between the two

affected nodes.

 48

9. Display

The Display module displays the results and a log analysis after the conclusion of

the simulation. The analysis is similar to what the MS performs in an actual deployed

network. The analysis includes determining whether secondary routes were used for each

node and the number of frames sent by each node that was not authenticated. Part of the

analysis performed within the simulation but not able to be performed by the MS includes

the percentage of successful frames that transited the network, the amount of time each

node spent within a phase, and the power draw of each node in the simulation.

F. SIMULATION USER FILES

The module Main requires user provided files to build the network prior to

executing the simulation. These files setup the devices by defining their capabilities as

well as the network’s capabilities. Within the files, the nodes and frames also receive a

reference number to simplify the process. The reference number prevents the need for a

researcher to reference each node by its address and each frame by its IP address and

sequence number. Within this simulation program, the reference number for each node

ranges from 1 to 27 and each frame obtains its reference number in sequential order from

one in whole increments until there are no more frames carrying event information.

1. Nodes (Create Nodes)

Within this simulation 27 nodes are created with node 27 acting as the BS. Each

node is assigned an IP and MAC address as well as a randomly generated key that is

shared with the MS.

2. Routing Table (Create Routing Table to Master)

The routing table used contains both the primary and secondary paths for all of

the nodes.

49

3. Affected Nodes (Create Energy Table)

To determine which neighboring nodes are affected during the transmission of a

frame, the researcher provides a file containing a list of all of the nodes and which nodes

it affects when transmitting.

4. Events (Create Event Table)

The event table is used to trigger the detections within the program. Each event

entry denotes a time the event is triggered and the node that detected the event. The

actual event is not necessary and is not recorded since it is not the focus of this thesis.

Within this thesis four event tables were used. Each table focuses on a speed a vehicle

would likely travel. The speeds for each of the four tables are 25, 35, 45, and 65 miles per

hour (mph). Each table also contains event triggers of an individual walking alongside a

street to increase the number of detections, which in turn creates more traffic within the

tactical WSN. When vehicles are transiting the intersection, a spacing of 2.0 to 3.0 s is

used to simulate a typical roadway environment. The parameters within each scenario are

shown in Table 3.

 Table 3. Parameters Used for each of the Four Scenarios that Are Simulated

G. SIMULATION LOGS

Mentioned throughout this chapter is the use of logs within the simulation. This is

beneficial to the researcher as it provides a way to examine how the frame transits the

network and aides in network troubleshooting. Similar logs are used within other well-

known simulation programs such as NS3 but do not provide the in-depth network logging

that this simulation program provides.

 50

1. PCAP

The PCAP log records every transmission that is made by a node within the

network. The entry contains the frame number, time at which the transmission occurred,

the source node number, the destination node number, and the entire binary form of the

frame.

2. Open Packets

The open packets log contains every individual frame created during the

simulation. Each line within the log is assigned to a frame, and the recorded data

represents the functions through which the frame transits. Each line in the log contains

the frame number, phase expiration time, the status of the frame, the number of

transmission attempts made by the current node, the source node number, destination

node number, and any incurred errors.

3. Node Status

The node status log records the current status of each node. Each node is assigned

a line within the log. Contained within the log are the node number, phase expiration

time, the phase the node is in, and the sequence number of the last frame that originated

from the node.

4. Node Status Table

The node status table records every transition made by a node. In this log, the

node is not assigned a line, but a new entry is made when a node transitions between

phases. Within each entry is the node number, the time the transition occurred, the phase

the node was in, and the phase to which the node transitioned.

5. Time in Phase

Within this log, each node is assigned a line, and the time spent within each phase

is recorded. This log is updated within the Check For Energy Use module, where the

phase of the node is checked and the value within the respective phase for the node is

incremented by one. Ultimately, the log provides the researcher with the amount of time

 51

the node spent within each phase, which is then used to determine the power draw of the

node.

H. CHAPTER SUMMARY

In this chapter, the sensors used within the simulation along with their

deployment methodology were examined. In addition, the node parameters used to

determine power draw upon the completion of the simulation were examined in-depth.

The incorporation of the phases into the frame and network parameters was then

discussed. The modules within the simulation program were determined by detailing the

critical modules within the program, including the test modules. The different files

programmed in MATLAB to build the network were explained in depth. A detailed

discussion of the series of logs that are maintained throughout the simulation was also

provided.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

53

V. SIMULATION RESULTS AND ANALYSIS

An assessment of the proposed 6LoWPAN WSN is needed in order to validate the

effectiveness of the implemented cyber security mechanisms. While the focus is on the

cyber security mechanisms within a 6LoWPAN enabled WSN, it must be anticipated that

these WSNs can be deployed to different types of environments. The different types of

environments create varying levels of network traffic. We simulate these different

environments using four scenarios that mimic the varying levels of traffic density. The

scenarios developed within this thesis mimic vehicles transiting an intersection at

different speeds. These scenarios then allow the researcher to determine the effects of the

implementation of the proposed cyber security mechanisms within a variety of simulated

network environments with each simulation listed as a trial.

The network topology used in the simulation is shown in Figure 12. A reference

number is given to each node in the figure. The reference number provides a simple

method for the researcher to reference a node within the program and within the user

created files. There are four scenarios simulated, each representing a specific speed of

vehicles traversing an intersection. The first scenario represents vehicles traveling at 25

miles per hour (mph), the second at 35 mph, the third at 45 mph, and the last scenario

represents vehicles traveling at 65 mph. Each of the four scenarios are initially simulated

with no attacks occurring. These trials act as the normal conditions of the tactical WSN,

creating a baseline to compare the results from simulations that incorporate attacks

performed on the WSN.

The nodes selected for each attack remain the same for all scenarios to allow for

comparisons between the different network environments. The total number of trials

conducted for each scenario is as follows: five trials with no attack, five trials with a

spoofing attack on node 24, five trials with a spoofing attack on node 16, a DOS attack

on node 5, a DOS attack on node 25, and an MITM attack between nodes 7 and 2. In

total, each scenario has six different network implementations with five trials per

implementation, resulting in a total of 30 trials for each scenario. This results in a total of

 54

120 trials for the program. Due to space, we show and discuss only a subset of the results

obtained.

In the following subsections, each attack is discussed and analyzed. An analysis

of each of the attacks is displayed from the view of the MS with the implemented cyber

security mechanisms in place; these mechanisms lead to either the detection or mitigation

of the attack. The power draw for each node, which is not analyzed by the MS, is also

discussed. Within the analysis slight variations within the results may be observed due to

the implementation of frame errors. The frame errors are caused by frames being dropped

or not properly received and can occur undetected on the last hop to the BS.

 Figure 12. Assignment of Reference Numbers to the Node of the Tactical WSN

 55

A. RESULTS

1. Spoofing

The purpose of the spoofing attack is to test the efficacy of the MIC security

mechanism added to the IEEE 802.15.4 6LoWPAN enabled frame. The two nodes

imitated in the spoofing attack are nodes 16 and 24. Node 16 was chosen since the

surrounding nodes have a higher traffic density than a node on the edge of the network.

Node 24 was selected since it is on the edge of the network with limited network traffic

flow and is one of the least protected nodes in the WSN. In order to detect a spoofed node

within the WSN, the MIC security mechanism is used to authenticate the frames received

by the MS.

The number of spoofed frames detected by the MS and sent by the rogue node

imitating node 16 is shown for Scenarios 2 and 3 in Figures 13 and 14, respectively. As

expected, the number of detected, spoofed frames varies between trials due to the activity

of the receiving node. The number of detected, spoofed frames also varies between

scenarios. This was determined through further analysis of the logs maintained during

each trial. It is observed that fewer frames were injected as the speed of the vehicles

being simulated increased.

We calculate and analyze the rate of the frames injected. The average number of

frames injected for the five trials performed for Scenario 2 was 43 (Figure 13), while 38

frames were injected in Scenario 3 (Figure 14). The rate for frame injection per second

was computed using

 _ _/ ()FI Avg Last Frame First FrameR FI T T (1)

where FIR is the rate at which a frame is injected, AvgFI denotes the average number of

frame injections within the scenario, and T is the time of the first and last frames within

the scenario. The FIR for Scenario 2 was 0.365 frames per second, resulting in an

average of an injected frame every 2.74 s. The FIR for Scenario 3 was 0.495 frames per

second, resulting in an average of an injected frame every 2.02 s. Even though the

number of injections is less as the speed increased from one scenario to the next, the rate

of injections increased, which demonstrates that frames are injected at the faster speeds if

 56

the scenarios are executed for the same amount of time. The increased rate of frame

injections was expected due to the increased activity level for each node.

Since the simulation program performing the analysis of the MS can only tell if

the frames being processed are spoofed, the logs were examined to determine if a spoofed

frame was not detected and processed. After reviewing the logs and determining which

frames were spoofed, 100% of the spoofed frames received by the BS within the program

were detected and denoted as non-authenticated by the MS. Within the logs, it was also

noted that not all spoofed frames were received, as a small percentage were either lost or

received in error by the BS.

 Figure 13. Number of Non-Authenticated Frames Received by the MS in each of the
Five Trials for Scenario 2 Simulating a Spoofing Attack on Node 16

57

 Figure 14. Number of Non-authenticated Frames Received by the MS in each of the
Five Trials for Scenario 3 Simulating a Spoofing Attack on Node 16

The number of frames detected by the MS that were sent by the rogue node

imitating node 24 are shown for Scenarios 2 and 3 in Figures 15 and 16, respectively.

Nodes 16 and 24 share similar characteristics in the slight variation of injected frames

between trials for a given scenario as well as between the scenarios; however, since node

24 is on the edge of the network and has a low density of network traffic, the node is

asleep more than node 16. This explains the difference in the average number of frame

injections. The average number of frames injected for the five trials performed on

Scenario 2 was 26 (Figure 15) while Scenario 3’s average was 23 (Figure 16). The

calculated rates were also similar to those for node 16; for node 24 for Scenario 2, FIR

was 0.221 frames per second, resulting in an injected frame every 4.52 s. The FIR for

Scenario 3 was 0.238 frames per second, resulting in an injected frame every 4.20 s.

 58

 Figure 15. Number of Non-authenticated Frames Received By the MS in each of the
Five Trials for Scenario 2 Simulating a Spoofing Attack on Node 24

 Figure 16. Number of Non-authenticated Frames received by the MS in each of the
Five Trails for Scenario 3 Simulating a Spoofing Attack on Node 16

The average power draw for each network environment is displayed in Table 4.

The spoofed node is highlighted yellow, the green shaded results signify the primary

route used by the spoofed node to send a frame to the MS, and the red shaded results

 59

signify neighboring nodes along the primary route. As expected, the nodes that are on the

primary route (green shaded) to the MS exhibited a minor increase in power draw as well

as the neighboring nodes (red shaded). The increase in power draw is expected because

the neighboring nodes are affected by the spoofed frames. This increases the number of

frames being transmitted by the primary route nodes, causing the neighboring nodes to

receive and process the increased number of transmitted frames. The small power draw

increase is noticeable but would only cause a minimal impact on the affected node’s

lifespan if the spoofing attack is mitigated.

 Table 4. Power Draw in mW for the Spoofing Attacks on Nodes 16 and 24

60

The ability of the MS to perform an analysis on received frames to determine if

there is a possible spoofing attack within the WSN, as well as to determine which node to

remove from the WSN to prevent further attacks, is illustrated in Figures 13 through 16.

The analysis focused on the use of the implementation of the MIC security mechanism to

authenticate valid frames sent by the nodes. Variations were also visible within the results

between the trials and scenarios being run, but they were expected and were accounted

for in the network logs. The assumption that the frame would continue to transit the

network to the MS before being detected as well as the small increase in power draw

along the spoofed frames’ primary route to the MS were also confirmed by the results in

Table 4. Overall, the MIC security mechanism is able to provide data integrity by

allowing the MS to authenticate each received frame. In addition, while the increase in

the number of frames transmitted has an impact on the power draw, it is minimal,

keeping the WSN functional.

2. DOS

The DOS attack was used to determine if the centralized routing scheme and the

use of the path indication bits could detect an attack or incapacitated node. The two nodes

for the DOS attack are nodes 5 and 25 due to their differing characteristics within the

WSN. Node 5 is on the edge of the network with limited network traffic flow and is also

able to be physically accessed undetected by an individual due to the MAGID coverage.

The implementation of the DOS attack on node 5 is displayed in Figure 17. Node 25 is

one of the extra relay nodes deployed near the BS and handles half of the traffic within

the network. An attack on Node 25 demonstrates the ability of the WSN to remain

reliable if an extra relay node is incapacitated. Specifically, a DOS attack on node 25

validates the network’s ability to utilize the secondary route of the centralized routing

mechanism. In addition, it also validates the WSN’s capability to accommodate an

increased traffic load. Scenario 1 and Scenario 4 are used to compare the DOS results.

61

 Figure 17. Deployment of a Rogue Node Performing a DOS Attack on Node 5

a. Original Hop

Our analysis of the DOS attack examines the centralized routing mechanism

executed by the MS. Specifically, we first look at the number of frames the originating

node failed to successfully send along the primary route. These results are shown in

Figure 18 for Scenario 1 and Figure 19 for Scenario 4. Nodes 1, 2 and 11 are observed to

have a significant increase in number of frames transiting to the next-hop node from the

originating node. The increase for nodes 1 and 2 occurred during the trials in which there

was a DOS attack on node 25, and the increase for node 11 occurred during the trials in

which there was a DOS attack on node 5. This is expected since the primary route for

node 11 is through node 5, and the primary route for nodes 1 and 2 is through node 25.

A closer examination of Figure 18 indicates that a limited number of frames from

nodes 7, 8, 16, and 17 also took secondary next-hop routes. These anomalies can be

62

attributed to a small amount of congestion within the network as it occurs even when no

attacks are executed as denoted by the results in red in Figure 18. Also shown in Figure

19 are the same anomalies that occurred in Figure 18. As shown in Figure 19, a moderate

number of frames from nodes 5, 6, 7, 8 and 11 also took secondary next-hop routes. This

is attributed to the increased congestion from not only the DOS attack on node 25 but

also the increased density of the traffic due to the faster detection rate. The network was

not able to clear the congestion quickly enough, and the congestion began to spread to

nodes two to three hops from the attacked node. Even though there was a greater amount

of congestion in the network, it remained secure and continued to reliably deliver frames

from affected nodes with near real-time precision.

 Figure 18. Frames Transmitted via Secondary Route per Node (Original Hop)
in Scenario 1 (Vehicular Traffic at 25 mph) for No Attacks and

DOS Attacks at Nodes 5 and 25

63

 Figure 19. Frames Transmitted via Secondary Route per Node (Original Hop)
in Scenario 4 (Vehicular Traffic at 65 mph) for No Attacks and

DOS Attacks at Nodes 5 and 25

The analysis presented in Figures 18 and 19 is based on the implementation of the

centralized routing mechanism with the utilization of the path indication bits. The path

indication bits alert the MS that the frame was not able to successfully transit the WSN

along the primary route from the originating node. The use of the secondary route is an

indication of possible congestion or a node malfunctioning, causing the WSN to operate

in a non-optimal manner. Furthermore, this increases the power draw of multiple nodes

and possibly causes more network congestion. Using the information gained from the

path indication bits, we see that the MS adjusts the centralized routing mechanism for

optimization.

b. Follow-on Hop

The DOS attack is further examined through the analysis of the number of frames

that were unsuccessfully transmitted along the primary route by the follow-on nodes.

These results are shown in Figure 20 for Scenario 1 and Figure 21 for Scenario 4. As

shown in Figure 20, a DOS attack on node 5 does not produce any significant changes in

terms of the number of unsuccessful transmitted frames. This is expected since node 5 is

64

only a primary route for node 11 and is not a primary route for any other nodes within the

network; however, the analysis of the DOS attack on node 25 shows a significant

increase in nodes that sent frames that utilized a secondary route at a follow-on node. The

significant increase in the utilization of secondary routes at follow-on nodes is expected

since node 25 is the primary route for half of the WSN to the BS. Minor escalations at

nodes 13, 17, 18, 21, 22, and 24 can be explained by congestion experienced from the

surge of network traffic utilizing the secondary routes. This is more evident in Figure 21

due to the increased density of network traffic in Scenario 4.

 Figure 20. Frames Transmitted via Secondary Route per Node (Follow-on Hops)
in Scenario 1 (Vehicular Traffic at 25 mph) for No Attacks and

DOS Attacks at Nodes 5 and 25

The analysis presented in Figures 20 and 21, like Figures 18 and 19 but for

follow-on hops, are possible due to the implementation of the centralized routing

mechanism with the utilization of the path indication bits. The secondary route

information data provides an additional awareness of the WSN’s status, which the MS

uses in order to determine if and/or how much congestion is within the WSN. The

65

combination of the follow-on hop data as well as the original hop data provides a near

real-time status of the WSN to the MS.

 Figure 21. Frames Transmitted via Secondary Route per Node (Follow-on Hops)
in Scenario 4 (Vehicular Traffic at 65 mph) for No Attacks and

DOS Attacks at Nodes 5 and 25

c. Power Draw

The average power draw for each node during the simulations of Scenarios 1 and

4, in conjunction with either a DOS attack on node 5 or a DOS attack on node 25 as well

as no attacks, are shown in Figure 22 and 23. As shown in Figure 22, there are minimal

changes in the power draw between no attack and the DOS attack on node 5 trials except

for node 5. The increase in power draw for node 5 is expected because node 5 is

constantly receiving a signal from the rogue node performing the DOS attack. It is also

observed in Figure 22 that the DOS attack on node 25 affects all of the nodes up to two

hops from the BS as well as nodes 7 and 8, which are three hops from the BS. This is

attributed to the increase in network traffic causing congestion, which in turn increases

the power draw of the affected nodes. Similar characteristics are also seen in Figure 23,

with the same nodes having an increase in their power draw for both attack simulations.

66

The results shown in Figures 22 and 23 have a strong correlation to the results

shown in Figures 18 and 19. The nodes from Figures 18 and 19, which utilized secondary

routes to transmit the frame from the original hop, correspond to the same nodes with an

increase in power draw in Figures 22 and 23. The increase in the power draw for the

surrounding nodes is expected since it requires the originating node to first transmit to the

primary route four times prior to transmitting to the secondary route. After further

examination of the results in Figures 22 and 23, we find that the nodes in Figure 23 had a

much larger power draw than those in Figure 22. As mentioned before, Scenario 4,

shown in Figure 23, simulates an environment in which detections occur at a rate

approximately two times greater than Scenario 1, shown in Figure 22. These results are

expected since the nodes have less time to sleep and spend more time awake, which

increases the power draw for the nodes.

 Figure 22. Average Power Draw per Node in Scenario 1 (Vehicular Traffic
at 25 mph) for No Attacks and DOS Attacks at Nodes 5 and 25

67

 Figure 23. Average Power Draw per Node in Scenario 4 (Vehicular Traffic
at 65 mph) for No Attacks and DOS Attacks at Nodes 5 and 25

3. MITM

Similar to the spoofing attack, the analysis performed on the MITM attack is

focused on the implementation of the MIC security mechanism but also the centralized

routing mechanism using the path indication bits. The wireless connection between nodes

7 and 2 was selected as the point of attack since it has a high density of traffic affecting a

large portion of the network but not the entire network. The power draw of the nodes was

not impacted as much as the Spoofing and DOS attacks. Shown in Figure 24 is the

analysis of the power draw for no attacks and an MITM attack between nodes 7 and 2.

The differences between the MITM simulations and no attack simulations are negligible

since the power draw for each node is the same.

68

 Figure 24. Average Power Draw per Node in mW when no Attack Occurs and
during the MITM Attack Simulations between Nodes 7 and 2

The average number of non-authenticated frames over the five conducted trials

for Scenario 1 is shown in Figure 25. Nodes 7, 12, 15, 16, 19, 20 and 23 have primary

routes through node 7 to node 2, and these nodes had the most non-authenticated frames.

The number of detections per node is 45 with a frame generated for each detection. A

slight variation between the frames sent by nodes and the frames received by the MS is

shown in Figure 25. The variation is accounted for by either a node along a frame’s path

utilizing a secondary route, resulting in the frame not transitioning through the affected

nodes, or the frame being lost or dropped at the BS. The non-authenticated frames from

nodes 17 and 18 are due to congestion within the network and the utilization of the

secondary route, which ultimately went through the affected nodes 7 and 2.

69

 Figure 25. Number of Non-authenticated Frames Received by the MS from the
Originating Node During a MITM Attack between Nodes 7 and 2

The results displayed in Table 5 are the averages of the five trials modeling the

MITM attack in Scenario 3. The table has three main parameters that were quantified

over each of the five trials for all 26 nodes. These parameters are 1) the number of frames

that were not authenticated by the MS, 2) the number of frames that took the secondary

route at the originating node, and 3) the number of frames that took a secondary route

along the follow-on hops. Within Scenario 3, each node has 41 instances in which the

node has a detection and transmits a frame alerting the MS to the detection.

Node 7 is significant since the number of non-authenticated frames is drastically

different from the 41 frames expected to be received by the MS and not authenticated. By

comparing the results of the non-authenticated frames of each node and the paths taken

by the frames from the originating node, we can explain the anomaly. Node 7 had an

average of 26.6 frames not authenticated by the MS. This is well below the anticipated 41

frames; however, since an average of 14.4 frames transited along node 7’s secondary

route, the frames were not affected by the rogue node performing the MITM attack. For

instance, by adding the 27 frames that were not authenticated during trial 1 (shown in

Table 3) and the 14 frames utilizing the secondary route from the originating node for

 70

trial 1 (shown in Table 3), the number of frames sent by node 7 equals 41; however, this

is not the case for all of the nodes.

 Table 5. Average Results of the Five Trials of MITM Attacks
Conducted on Scenario 3

Node 17 shares the opposite characteristics as the node’s primary path to the MS

does not transit through the affected nodes, but the node’s secondary path does. Node 17

has a secondary route from the originating node to node 16, which then goes through

nodes 7 and 2. Comparing each trial within the non-authenticated frames to the secondary

routes taken at node 17, we see that the results are equal.

Just like spoofing, the MS is able to perform an analysis on received frames to

determine if there is a possible attack within the WSN. These results are shown in Figure

24. Unlike in a spoofing attack, where only the follow-on nodes from the spoofing attack

71

are affected, the nodes prior to the MITM attack are the ones affected (as shown in Table

3). With the use of the MIC security mechanism to authenticate valid frames sent by the

nodes as well as the routing information within the centralized routing mechanism, the

MS is able to determine where the attack is occurring and which nodes to remove from

the WSN. Overall, the MIC security mechanism is able to provide data integrity in that it

allows the MS to authenticate each received frame. The centralized routing mechanism

used in conjunction with the utilization of designated path bits helps determine which

nodes to remove in order to provide network reliability.

B. CHAPTER SUMMARY

We began this chapter by describing the simplified method of referencing each

node by a number in order to comprehend the results given within each subsection for the

different types of attacks considered. The first attack examined was the spoofing attack

that was meant to test the MIC security mechanism implementation. The second was the

DOS attack that tested the detection of the attack by the centralized routing mechanism

implementation. The final attack, the MITM attack, tested both the centralized routing

mechanism as well as the MIC security mechanism implementations.

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

VI. CONCLUSION AND FUTURE WORK

A. SUMMARY AND CONCLUSIONS

In this thesis, we studied the implementation of the 6LoWPAN protocol for

tactical WSNs and examined the need for 6LoWPAN in tactical WSNs used by the

USMC in operational scenarios. Through the use of 6LoWPAN, our aim was to reduce

the manpower required to maintain the tactical WSN by allowing the WSN to be

managed from a remote, secure location. Ultimately, 6LoWPAN provides automation to

the data flow by eliminating the need of an individual to physically retrieve data from the

COC. The 6LoWPAN protocol, with the addition of necessary cyber security

mechanisms, can be implemented and used by the USMC to boost the abilities of its

current WSNs.

In this thesis, we developed and discussed a comprehensive tactical WSN

framework using 6LoWPAN that includes a hierarchical network design using defined

network devices. The use of a structured/centralized network design allows for secure

network reachability and accessibility. We implemented multiple cyber security

mechanisms within the 6LoWPAN protocol. These security features included a

centralized routing scheme, encryption, authentication and integrity. These features were

applied/implemented into the 6LoWPAN frame structure. The combination of these

various cyber security mechanisms and frame structure modifications create an effective

and efficient tactical WSN that can be utilized by the USMC.

We evaluated our framework using MATLAB and tested it against three well-

known attacks. Results obtained from the simulations focused on the effectiveness of the

cyber security implementations and the power draw of each node. The results for the

effectiveness of the cyber security implementations were derived from the metrics

provided by the MS within the simulation. Specifically, the cyber security mechanisms

that can be analyzed by the MS are the implementation of the MIC and centralized

routing scheme with the use of indication bits.

 74

The use of the MIC provided integrity to the WSN by preventing the

authentication of 100% of the frames received by the MS in either the spoofing or MITM

attacks. The use of the centralized routing scheme ensured the WSN remained functional

and reliable even when one of the two nodes connecting the BS to the rest of the WSN

was disabled during the DOS attack. The implementation of indication bits within the

modified 6LoWPAN frame structure enabled the MS to determine that there was

congestion within the network resulting from either traffic density or an incapacitated

node.

The power draw for each node, which is not analyzed by the MS, was also

examined. The effects of the spoofing attack demonstrated that while the injected frame

within the network was not authenticated by the MS, the surrounding nodes along the

frame’s path to the MS were affected with an increased power draw, shortening the

node’s lifespan. The DOS attack had a much larger impact, especially on the node being

attacked as well as on nodes up to two hops away, resulting in an increase in power draw

either from the congestion or the utilization of the secondary route of the centralized

routing scheme. As expected, the MITM attacks had little effect on a node’s power draw.

Within this thesis we provided an effective and efficient tactical WSN using

6LoWPAN that can remain reliable and secure while deployed within harsh

environments. We conclude that the developed cyber security mechanisms and network

structure provide a foundation on which future tactical WSNs used within the USMC can

be based.

B. CONTRIBUTIONS OF THIS THESIS

The objective of this thesis was to implement a secure tactical WSN that can be

deployed in a variety of environmental conditions supporting the USMC mission. The

contributions of this thesis can be summarized as follows:

 Development of a command and control (administrative control) structure
of the tactical WSN that incorporates node control, a unique
defined/centralized routing model, and a selected keying mechanism for
data confidentiality, authentication and integrity.

 75

 Construction of a modified 6LoWPAN enabled IEEE 802.15.4 frame
structure to incorporate the unique centralized routing model and selected
keying mechanism.

 Enhancement of methods to aid in the deployment planning of the secured
tactical WSN to prevent critical vulnerabilities.

 Simulation and evaluation of the proposed network framework against
multiple attacks and testing for security robustness and energy
conservation.

To the best of our knowledge, this is the first implementation of a secure

6LoWPAN enabled IEEE 802.15.4 WSN for the USMC tactical space that has been

evaluated against well-known attacks.

C. FUTURE WORK

The combination of energy conservation for energy constrained devices and the

implementations of enhanced cyber security mechanisms are critical for military WSN

applications. The initial groundwork to achieve the security needs for the USMC tactical

WSN were provided within this thesis. Future work is suggested as follows.

1. Application of Sink Node Anonymity

The theoretical framework developed in this thesis introduces a single point of

failure among the deployable devices within the WSN. This single point of failure is the

BS, which is a critical asset in the network. Previous research was completed on the

privacy of the BS in [9]; however, cybersecurity methods were not addressed. Providing

privacy to the BS with the use of the methods given in [9] and integrating it with the

security framework developed in this thesis will provide another layer of defense for the

critical asset and make it harder for the enemy to identify the BS and disrupt or disable

the WSN.

2. Implementation of the BS

The BS is a critical element within the WSN and performs the transition between

the 6LoWPAN enabled IEEE 802.15.4WSN and the selected public domain. The

development and implementation of a BS that is able to perform the transitions from the

 76

WSN to multiple types of networks within one device is vital. The BS needs to be able to

connect to multiple types of public infrastructures including cellular, Wi-Fi, and Ethernet

as well as other possible external military IP communication forms currently in use. The

development of one device with all of the capabilities also allows for the universal

deployment of the WSN, not just within a restricted location in which the designated

infrastructure is present.

3. Implementation of Cyber Security on a Mobile WSN

The routing mechanisms used within this thesis is static due to the nature of the

devices being used; however, the use of WSNs within a mobile environment is also of

value to military applications. The WSNs can be attached to individuals, providing

valuable information in regard to the individual’s location or biometric readings

enhancing situational awareness of the deployed force. Neighbor discovery methods and

authentication were not examined within this thesis but would be required for the

implementation of a mobile WSN since nodes could connect within the WSN at any

point. The determination of how the nodes could reliably discover each other as well as

the development of a keying mechanism to provide authentication are required. The

routing mechanism also needs to be adjusted continuously among the deployed devices to

facilitate the organic nature of the network, as it changes with formation of the deployed

forces.

 77

APPENDIX. SIMULATION PROGRAM

%%%
% Main %
%%%

clc;
clear all;
close all;
format compact;

% Create globals I want to use and retain for the final product

global Packet;
global Packets;
global Open_Packets;
global PCAP;
global Timer;
global Events;
global Routing_Table;
global Node_Address;
global Node_Status;
global Node_Status_Table;
global Energy_Use;
global Packet_Retrans_Tracker;
global Keys;
global Payload;
global MAC;
global Initial_Payload;
global MAC_Check;
global MAC_F;
global Payload_Out;
global Selection;
global NodeTX;
global Enc;

% Variables for conducting an attack
global DDOS_Node;
global MITM_Nodes;
global Spoofed_Node;

global fileID;

% Where do you want the information to be stored for each run?
fileID = fopen('results/test.txt','w');

% Which Scenario would you like to run?
Selection = 1;

% Build the framework
Create();

 78

% Directed Denial of Service
% To activate the DDOS attack, uncomment and select which node you
% would like to perform the attack on.
% To simulate the attack the node will not be able to send or
% receive packets, therefore the node's status will be set to a level
% that it will not be able to interact with the deployed network.
% Node to be attacked (must be between 1 and 26
DDOS_Node = 28;
if DDOS_Node < 28
 DDOS(1);
end

% Spoofing attack
% Packets will be sent from a separate node pretending to be a node
% within the network. The spoofing node will use a neighbor node's MAC
% and IPaddresses as well as the CRC sequence. The packet is then sent
% to the Master Station where it would determine if it would pass the
% integrity check.
% Select a node to spoof (must be between 1-26)
Spoofed_Node = 28;
 Spoofing();

% Man in the Middle attack
% In this type of attack the contents of the packet will be modified
% while in transmission. It will make its way through until it reaches
% the Master Station, and at that point the MAC is tested and would
% fail.
 MITM_Nodes = [28,29];

% Initialize the Timer!
Timer = 0;

Run_Simulation();

Display();
fclose(fileID);

%%%
% Create %
%%%

function Create()
% Creates the framework for the network

Create_Nodes();
Create_Routing_Table_To_Master();
Create_Packet_Table();
Create_Energy_Table();
Create_Energy_Use();
Create_Event_Table();

 79

Create_PCAP_Table();

end

%%%
% Create_Nodes %
%%%
function Create_Nodes()
% Use the below information to create the node for your architecture
global Node_Address;
global Node_MAC;
global Node_Location;
global Node_Status;
global Wait_Time;
global Node_Status_Table;
global Keys;
global NodeTX;
global NodeRX;

% number of transmissions per node
NodeTX = [
 1 0;
 2 0;
 3 0;
 4 0;
 5 0;
 6 0;
 7 0;
 8 0;
 9 0;
 10 0;
 11 0;
 12 0;
 13 0;
 14 0;
 15 0;
 16 0;
 17 0;
 18 0;
 19 0;
 20 0;
 21 0;
 22 0;
 23 0;
 24 0;
 25 0;
 26 0;
 27 0;
];

%number of receptions per node
NodeRX = .

 80

 1 0;
 2 0;
 3 0;
 4 0;
 5 0;
 6 0;
 7 0;
 8 0;
 9 0;
 10 0;
 11 0;
 12 0;
 13 0;
 14 0;
 15 0;
 16 0;
 17 0;
 18 0;
 19 0;
 20 0;
 21 0;
 22 0;
 23 0;
 24 0;
 25 0;
 26 0;
 27 0;
];

% Node# Byte 1 | Byte 2 | Byte 3 |
Byte 4 | Byte 5 | Byte 6 | Byte 7
| Byte 8 |
Node_Address = [
 001 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 002 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,0,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 003 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,0,
0,0,0,0, 0,0,0,0, 0,0,1,1;
 004 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,0,
0,0,0,0, 0,0,0,0, 0,1,0,0;
 005 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 006 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 007 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,0,1,1;

 81

 008 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,1,0,0;
 009 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,1,0,1;
 010 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,1,1,0;
 011 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 012 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 013 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
0,0,0,0, 0,0,0,0, 0,0,1,1;
 014 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
0,0,0,0, 0,0,0,0, 0,1,0,0;
 015 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,0,1,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 016 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,0,1,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 017 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,0,1,
0,0,0,0, 0,0,0,0, 0,0,1,1;
 018 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,0,1,
0,0,0,0, 0,0,0,0, 0,1,0,0;
 019 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 020 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 021 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
0,0,0,0, 0,0,0,0, 0,0,1,1;
 022 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
0,0,0,0, 0,0,0,0, 0,1,0,0;
 023 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,1,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 024 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,1,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 025 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,1;

 82

 026 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 0,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 027 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 0,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,1,1;

];

Node_MAC = [
 001 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 002 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,0,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 003 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,0,
0,0,0,0, 0,0,0,0, 0,0,1,1;
 004 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,0,
0,0,0,0, 0,0,0,0, 0,1,0,0;
 005 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 006 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 007 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,0,1,1;
 008 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,1,0,0;
 009 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,1,0,1;
 010 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,0,
0,0,0,0, 0,0,0,0, 0,1,1,0;
 011 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 012 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 013 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
0,0,0,0, 0,0,0,0, 0,0,1,1;
 014 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
0,0,0,0, 0,0,0,0, 0,1,0,0;
 015 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,0,1,
0,0,0,0, 0,0,0,0, 0,0,0,1;

 83

 016 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,0,1,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 017 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,0,1,
0,0,0,0, 0,0,0,0, 0,0,1,1;
 018 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,0,1,
0,0,0,0, 0,0,0,0, 0,1,0,0;
 019 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 020 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 021 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
0,0,0,0, 0,0,0,0, 0,0,1,1;
 022 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
0,0,0,0, 0,0,0,0, 0,1,0,0;
 023 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,1,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 024 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,0,1,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 025 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,0,1;
 026 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 0,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,1,0;
 027 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 0,0,0,0,
0,0,0,0, 0,0,0,0, 0,0,1,1;
];

% Node # X Axis Y Axis
Node_Location = [
 001 5 -22.5;
 002 5 -12.5;
 003 12.5 -5;
 004 22.5 -5;
 005 5 -32.5;
 006 -5 -22.5;
 007 -5 -12.5;
 008 12.5 5;
 009 12.5 5;
 010 32.5 -5;
 011 -5 -32.5;
 012 -12.5 -5;
 013 5 12.5;
 014 32.5 5;

 84

 015 -22.5 -5;
 016 -12.5 5;
 017 -5 12.5;
 018 5 22.5;
 019 -32.5 -5;
 020 -22.5 5;
 021 -5 22.5;
 022 5 32.5;
 023 -32.5 5;
 024 -5 32.5;
 025 12.5 -17.5;
 026 17.5 -12.5;
 027 17.5 -17.5;

];

% Node# Status Stat Time chg Errors? Seq #
Node_Status = [
 1 0 0 0 0;
 2 0 0 0 0;
 3 0 0 0 0;
 4 0 0 0 0;
 5 0 0 0 0;
 6 0 0 0 0;
 7 0 0 0 0;
 8 0 0 0 0;
 9 0 0 0 0;
 10 0 0 0 0;
 11 0 0 0 0;
 12 0 0 0 0;
 13 0 0 0 0;
 14 0 0 0 0;
 15 0 0 0 0;
 16 0 0 0 0;
 17 0 0 0 0;
 18 0 0 0 0;
 19 0 0 0 0;
 20 0 0 0 0;
 21 0 0 0 0;
 22 0 0 0 0;
 23 0 0 0 0;
 24 0 0 0 0;
 25 0 0 0 0;
 26 0 0 0 0;
 27 2 0 0 0;
];

% Node Time
Wait_Time = [
 1 0;
 2 0;
 3 0;
 4 0;
 5 0;

 85

 6 0;
 7 0;
 8 0;
 9 0;
 10 0;
 11 0;
 12 0;
 13 0;
 14 0;
 15 0;
 16 0;
 17 0;
 18 0;
 19 0;
 20 0;
 21 0;
 22 0;
 23 0;
 24 0;
 25 0;
 26 0;
 27 0;
];

%Node Time Action from Action to
Node_Status_Table = [
 0 0 0 0;
];

%random keys generated for each node to be shared with the MS
for n = 1:27
 Keys(n,1:128) = randi([0,1],1,128);
end

end

%%%
% Create_Routing_Table_To_Master %
%%%

function Create_Routing_Table_To_Master()

% Below is the Routing table to be used
global Routing_Table;
%Catergory 1=Send Pri 2=Send Sec
% Node# Category Next Hop
Routing_Table = [
 1 1 25;
 2 1 25;
 3 1 26;
 4 1 26;
 5 1 1;

 86

 6 1 1;
 7 1 2;
 8 1 3;
 9 1 4;
 10 1 4;
 11 1 5;
 12 1 7;
 13 1 8;
 14 1 10;
 15 1 12;
 16 1 12;
 17 1 13;
 18 1 13;
 19 1 15;
 20 1 15;
 21 1 18;
 22 1 18;
 23 1 19;
 24 1 22;
 25 1 27;
 26 1 27;
 1 2 2;
 2 2 3;
 3 2 2;
 4 2 3;
 5 2 11;
 6 2 7;
 7 2 6;
 8 2 9;
 9 2 8;
 10 2 14;
 11 2 6;
 12 2 16;
 13 2 17;
 14 2 9;
 15 2 20;
 16 2 17;
 17 2 16;
 18 2 21;
 19 2 23;
 20 2 16;
 21 2 17;
 22 2 24;
 23 2 20;
 24 2 21;
 25 2 27;
 26 2 27;
];
end

 87

%%%
% Create_Packet_Table %
%%%

function Create_Packet_Table()
% Create the table to store open packets in

global Open_Packets;
global Starter_Packet;
global Packet;
global Node_Last_Packet;
global Packet_Retrans_Tracker;
global Retrans;
global Initial_Payload;
global Packets;

Packets = zeros(1,3);

Retrans = 0;

% Initialize Packet variable
Packet(1,1:1016) = zeros(1,1016);

% Initialize Packet Retransmit Tracker
% Packet number NewPack# Trans-Node Timer
Packet_Retrans_Tracker(1,1:4)= [0 0 0 0];

%Packet# timer event # of trans TransNode RecNode Errors
Open_Packets = [
 0 0 0 0 0 0 99
];

% Frame Control
Starter_Packet(1:16) = [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0];

% Source MAC Address
Starter_Packet(17:80) = ones(1,64);

%Destination MAC Address
Starter_Packet(81:144) = ones(1,64);

%LOWPAN_IPHC
Starter_Packet(145:160)= randi([0,1],1,16);

% Path/Hop Limit
Starter_Packet(161:162) = [0,0]; % Path
Starter_Packet(163:168) = ones(1,6); % Hop Limit

% Iniialization Vector
% Source Address
 Starter_Packet(169:184) = ones(1,16);

% Destination Address

 88

 Starter_Packet(185:200) = ones(1,16);

% LOWPAN NHC
 Starter_Packet(201:216) = randi([0,1],1,16);

%Flags
 Starter_Packet(217:224) = randi([0,1],1,8);

%Sequence Number
 Starter_Packet(225:256) = ones(1,32);

% Source Port
 Starter_Packet(257:272) = randi([0,1],1,16);

% Destination Port
 Starter_Packet(273:288) = randi([0,1],1,16);

% Length
 Starter_Packet(289:296) = randi([0,1],1,8);

% Payload
aa = 297;
bb = aa + 7;
for n = 1:16
 Starter_Packet(aa:bb) = [1 0 0 1 1 0 0 1];
 aa = aa + 8;
 bb = aa + 7;
end

Initial_Payload(1:128) = Starter_Packet(297:424);

% Padding
Starter_Packet(425:864) = randi([0,1],1,440);

% Message Integrity Code
Starter_Packet(865:992) = ones(1,128);

% Next Header
Starter_Packet(993:1000) = ones(1,8);

% Field Check Sum (CRC)
Starter_Packet(1001:1016) = ones(1,16);

for n = 1:24
 Node_Last_Packet(n,:) = Starter_Packet;
end

end

 89

%%%
% Create_Energy_Table %
%%%

function Create_Energy_Table()
% To determine the amount of energy use from receiving a packet

global Energy_Table;

% TransNode Affected Node
Energy_Table = [
 1 2;
 1 5;
 1 6;
 1 25;
 2 7;
 2 3;
 2 1;
 2 25;
 3 8;
 3 4;
 3 2;
 3 26;
 4 9;
 4 10;
 4 3;
 4 26;
 5 1;
 5 11;
 6 11;
 6 1;
 6 7;
 7 6;
 7 2;
 7 12;
 8 13;
 8 3;
 8 9;
 9 8;
 9 4;
 9 14;
 10 14;
 10 4;
 11 5;
 11 6;
 12 7;
 12 15;
 12 16;
 13 8;
 13 17;
 13 18;
 14 10;
 14 9;
 15 12;
 15 19;

 90

 15 20;
 16 17;
 16 12;
 16 20;
 17 16;
 17 13;
 17 21;
 18 13;
 18 21;
 18 22;
 19 23;
 19 15;
 20 15;
 20 16;
 20 23;
 21 17;
 21 18;
 21 24;
 22 18;
 22 24;
 23 19;
 23 20;
 24 21;
 24 22;
 25 1;
 25 2;
 25 26;
 25 27;
 26 3;
 26 4;
 26 25;
 26 27;
 27 25;
 27 26;
];

end

%%%
% Create_Energy_Use %
%%%

function Create_Energy_Use()
% Keeps track of the amount of energy used per node during the
simulation

global Energy_Use;
% Node Wakeup Process Trans Rec Waiting Go2Slp Post-T-Wait
Sleep
Energy_Use = [
 1 0 0 0 0 0 0 0 0;
 2 0 0 0 0 0 0 0 0;

 91

 3 0 0 0 0 0 0 0 0;
 4 0 0 0 0 0 0 0 0;
 5 0 0 0 0 0 0 0 0;
 6 0 0 0 0 0 0 0 0;
 7 0 0 0 0 0 0 0 0;
 8 0 0 0 0 0 0 0 0;
 9 0 0 0 0 0 0 0 0;
 10 0 0 0 0 0 0 0 0;
 11 0 0 0 0 0 0 0 0;
 12 0 0 0 0 0 0 0 0;
 13 0 0 0 0 0 0 0 0;
 14 0 0 0 0 0 0 0 0;
 15 0 0 0 0 0 0 0 0;
 16 0 0 0 0 0 0 0 0;
 17 0 0 0 0 0 0 0 0;
 18 0 0 0 0 0 0 0 0;
 19 0 0 0 0 0 0 0 0;
 20 0 0 0 0 0 0 0 0;
 21 0 0 0 0 0 0 0 0;
 22 0 0 0 0 0 0 0 0;
 23 0 0 0 0 0 0 0 0;
 24 0 0 0 0 0 0 0 0;
 25 0 0 0 0 0 0 0 0;
 26 0 0 0 0 0 0 0 0;
 27 0 0 0 0 0 0 0 0;
];
end

%%%
% Create_Event_Table %
%%%

function Create_Event_Table()
% This is what initiates the events. Events are put in to create the
% sensing events that are simulated within the program.

global Events;
global Orig_Events;
global Scenario_1;
global Scenario_2;
global Scenario_3;
global Scenario_4;
global fileID;
global Enc;

%Choose which one you would like but comment out the others
Event_Table();

% or build your own setup

% %Scenario selection
global Selection;

 92

% which events to upload per the user's determination in "main" file
if Selection == 1
 Events = Scenario_1;
elseif Selection == 2
 Events = Scenario_2;
elseif Selection == 3
 Events = Scenario_3;
elseif Selection == 4
 Events = Scenario_4;
end

% logs for the events
[a,b] = size(Events);
Orig_Events = a;
Enc = zeros(1,26);
for n = 1:a
 Enc(Events(n,2)) = Enc(Events(n,2)) + 1;
end

fprintf('A total of %i detections were orignally uploaded. \n',a);
fprintf(fileID,'A total of %i detections were orignally uploaded.
\n',a);
end

%%%
% Event_Table %
%%%

function Event_Table()
% This is what initiates the events. Events are put in to create the
% sensing events that are simulated within the program.

%Events used in this thesis, 1-4, preloaded in their individual files
Scenario_11();
Scenario_22();
Scenario_33();
Scenario_44();

End

%%%
% Scenario 11 %
%%%

function Scenario_11()

global Scenario_1;

 93

%time originating node destination node
Scenario_1 = [
0 14 27
0 19 27
447 10 27
447 23 27
894 9 27
894 15 27
1342 4 27
1342 20 27
1789 8 27
1789 12 27
2000 14 27
2000 19 27
2236 3 27
2236 16 27
4000 5 27
4000 24 27
4025 3 27
4025 16 27
4447 11 27
4447 22 27
4472 8 27
4472 12 27
4894 1 27
4894 21 27
4919 4 27
4919 20 27
5342 6 27
5342 18 27
5367 9 27
5367 15 27
5789 2 27
5789 17 27
5814 10 27
5814 23 27
6236 7 27
6236 13 27
6261 14 27
6261 19 27
7000 14 27
7000 19 27
7447 10 27
7447 23 27
7894 9 27
7894 15 27
8025 7 27
8025 13 27
8342 4 27
8342 20 27
8472 2 27
8472 17 27
8789 8 27
8789 12 27
8919 6 27

 94

8919 18 27
9000 14 27
9000 19 27
9194 9 27
9194 15 27
9236 3 27
9236 16 27
9367 1 27
9367 21 27
9447 10 27
9447 23 27
9814 11 27
9814 22 27
9894 9 27
9894 15 27
10261 5 27
10261 24 27
10342 4 27
10342 20 27
10789 8 27
10789 12 27
11025 3 27
11025 16 27
11236 3 27
11236 16 27
11472 8 27
11472 12 27
11919 4 27
11919 20 27
12367 9 27
12367 15 27
12814 10 27
12814 23 27
13000 5 27
13000 24 27
13025 3 27
13025 16 27
13261 14 27
13261 19 27
13447 11 27
13447 22 27
13472 8 27
13472 12 27
13894 1 27
13894 21 27
13919 4 27
13919 20 27
14342 6 27
14342 18 27
14367 9 27
14367 15 27
14789 2 27
14789 17 27
14814 10 27
14814 23 27

 95

15000 5 27
15000 24 27
15236 7 27
15236 13 27
15261 14 27
15261 19 27
15447 11 27
15447 22 27
15894 1 27
15894 21 27
16342 6 27
16342 18 27
16388 8 27
16388 12 27
16789 2 27
16789 17 27
17025 7 27
17025 13 27
17236 7 27
17236 13 27
17472 2 27
17472 17 27
17919 6 27
17919 18 27
18367 1 27
18367 21 27
18814 11 27
18814 22 27
19000 14 27
19000 19 27
19025 7 27
19025 13 27
19261 5 27
19261 24 27
19447 10 27
19447 23 27
19472 2 27
19472 17 27
19894 9 27
19894 15 27
19919 6 27
19919 18 27
20000 5 27
20000 24 27
20342 4 27
20342 20 27
20367 1 27
20367 21 27
20789 8 27
20789 12 27
20814 11 27
20814 22 27
21236 3 27
21236 16 27
21261 5 27

 96

21261 24 27
22000 14 27
22000 19 27
22447 10 27
22447 23 27
22894 9 27
22894 15 27
23025 3 27
23025 16 27
23342 4 27
23342 20 27
23472 8 27
23472 12 27
23789 8 27
23789 12 27
23919 4 27
23919 20 27
24236 3 27
24236 16 27
24367 9 27
24367 15 27
24814 10 27
24814 23 27
25000 14 27
25000 19 27
25261 14 27
25261 19 27
25447 10 27
25447 23 27
25894 9 27
25894 15 27
26025 3 27
26025 16 27
26342 4 27
26342 20 27
26472 8 27
26472 12 27
26789 8 27
26789 12 27
26919 4 27
26919 20 27
27194 1 27
27194 21 27
27236 3 27
27236 16 27
27367 9 27
27367 15 27
27814 10 27
27814 23 27
28261 14 27
28261 19 27
29025 3 27
29025 16 27
29472 8 27
29472 12 27

 97

29919 4 27
29919 20 27
30000 5 27
30000 24 27
30367 9 27
30367 15 27
30447 11 27
30447 22 27
30814 10 27
30814 23 27
30894 1 27
30894 21 27
31261 14 27
31261 19 27
31342 6 27
31342 18 27
31789 2 27
31789 17 27
32000 5 27
32000 24 27
32236 7 27
32236 13 27
32447 11 27
32447 22 27
32894 1 27
32894 21 27
33342 6 27
33342 18 27
33789 2 27
33789 17 27
34000 5 27
34000 24 27
34025 7 27
34025 13 27
34236 7 27
34236 13 27
34374 3 27
34374 16 27
34388 2 27
34388 17 27
34447 11 27
34447 22 27
34472 2 27
34472 17 27
34894 1 27
34894 21 27
34919 6 27
34919 18 27
35342 6 27
35342 18 27
35367 1 27
35367 21 27
35789 2 27
35789 17 27
35814 11 27

 98

35814 22 27
36025 7 27
36025 13 27
36236 7 27
36236 13 27
36261 5 27
36261 24 27
36472 2 27
36472 17 27
36919 6 27
36919 18 27
37367 1 27
37367 21 27
37814 11 27
37814 22 27
38025 7 27
38025 13 27
38261 5 27
38261 24 27
38472 2 27
38472 17 27
38919 6 27
38919 18 27
39367 1 27
39367 21 27
39814 11 27
39814 22 27
40000 14 27
40000 19 27
40261 5 27
40261 24 27
40447 10 27
40447 23 27
40894 9 27
40894 15 27
41342 4 27
41342 20 27
41568 4 27
41568 20 27
41789 8 27
41789 12 27
42000 14 27
42000 19 27
42236 3 27
42236 16 27
42447 10 27
42447 23 27
42894 9 27
42894 15 27
43342 4 27
43342 20 27
43789 8 27
43789 12 27
44000 14 27
44000 19 27

 99

44025 3 27
44025 16 27
44236 3 27
44236 16 27
44447 10 27
44447 23 27
44472 8 27
44472 12 27
44894 9 27
44894 15 27
44919 4 27
44919 20 27
45342 4 27
45342 20 27
45367 9 27
45367 15 27
45789 8 27
45789 12 27
45814 10 27
45814 23 27
46000 14 27
46000 19 27
46025 3 27
46025 16 27
46236 3 27
46236 16 27
46261 14 27
46261 19 27
46447 10 27
46447 23 27
46472 8 27
46472 12 27
46894 9 27
46894 15 27
46919 4 27
46919 20 27
47342 4 27
47342 20 27
47367 9 27
47367 15 27
47789 8 27
47789 12 27
47814 10 27
47814 23 27
48025 3 27
48025 16 27
48236 3 27
48236 16 27
48261 14 27
48261 19 27
48472 8 27
48472 12 27
48763 10 27
48763 23 27
48919 4 27

 100

48919 20 27
49367 9 27
49367 15 27
49814 10 27
49814 23 27
50025 3 27
50025 16 27
50261 14 27
50261 19 27
50472 8 27
50472 12 27
50919 4 27
50919 20 27
51367 9 27
51367 15 27
51814 10 27
51814 23 27
52000 5 27
52000 24 27
52261 14 27
52261 19 27
52374 7 27
52374 13 27
52447 11 27
52447 22 27
52894 1 27
52894 21 27
53342 6 27
53342 18 27
53789 2 27
53789 17 27
54000 5 27
54000 24 27
54236 7 27
54236 13 27
54447 11 27
54447 22 27
54894 1 27
54894 21 27
55342 6 27
55342 18 27
55789 2 27
55789 17 27
56000 5 27
56000 24 27
56025 7 27
56025 13 27
56236 7 27
56236 13 27
56447 11 27
56447 22 27
56472 2 27
56472 17 27
56894 1 27
56894 21 27

 101

56919 6 27
56919 18 27
57342 6 27
57342 18 27
57367 1 27
57367 21 27
57789 2 27
57789 17 27
57814 11 27
57814 22 27
58000 5 27
58000 24 27
58025 7 27
58025 13 27
58236 7 27
58236 13 27
58261 5 27
58261 24 27
58447 11 27
58447 22 27
58472 2 27
58472 17 27
58894 1 27
58894 21 27
58919 6 27
58919 18 27
59342 6 27
59342 18 27
59367 1 27
59367 21 27
59568 6 27
59568 18 27
59789 2 27
59789 17 27
59814 11 27
59814 22 27
60025 7 27
60025 13 27
60236 7 27
60236 13 27
60261 5 27
60261 24 27
60472 2 27
60472 17 27
60919 6 27
60919 18 27
61367 1 27
61367 21 27
61814 11 27
61814 22 27
62025 7 27
62025 13 27
62261 5 27
62261 24 27
62472 2 27

 102

62472 17 27
62919 6 27
62919 18 27
63367 1 27
63367 21 27
63814 11 27
63814 22 27
64261 5 27
64261 24 27
65000 14 27
65000 19 27
65447 10 27
65447 23 27
65894 9 27
65894 15 27
66342 4 27
66342 20 27
66763 11 27
66763 22 27
66789 8 27
66789 12 27
67236 3 27
67236 16 27
68000 14 27
68000 19 27
68447 10 27
68447 23 27
68894 9 27
68894 15 27
69025 3 27
69025 16 27
69342 4 27
69342 20 27
69472 8 27
69472 12 27
69789 8 27
69789 12 27
69919 4 27
69919 20 27
70236 3 27
70236 16 27
70367 15 27
70367 9 27
70814 10 27
70814 23 27
71000 14 27
71000 19 27
71261 14 27
71261 19 27
71447 10 27
71447 23 27
71894 9 27
71894 15 27
72025 3 27
72025 16 27

 103

72342 4 27
72342 20 27
72472 8 27
72472 12 27
72789 8 27
72789 12 27
72919 4 27
72919 20 27
73236 3 27
73236 16 27
73367 9 27
73367 15 27
73814 10 27
73814 23 27
74000 14 27
74000 19 27
74261 14 27
74261 19 27
74447 10 27
74447 23 27
74894 9 27
74894 15 27
75025 3 27
75025 16 27
75342 4 27
75342 20 27
75472 8 27
75472 12 27
75789 8 27
75789 12 27
75919 4 27
75919 20 27
76236 3 27
76236 16 27
76367 9 27
76367 15 27
76814 10 27
76814 23 27
77000 14 27
77000 19 27
77261 14 27
77261 19 27
77447 10 27
77447 23 27
77894 9 27
77894 15 27
78025 3 27
78025 16 27
78342 4 27
78342 20 27
78472 8 27
78472 12 27
78789 8 27
78789 12 27
78919 4 27

 104

78919 20 27
79236 3 27
79236 16 27
79367 9 27
79367 15 27
79814 10 27
79814 23 27
80261 14 27
80261 19 27
81025 3 27
81025 16 27
81472 8 27
81472 12 27
81919 4 27
81919 20 27
82367 9 27
82367 15 27
82814 10 27
82814 23 27
83261 14 27
83261 19 27
85000 5 27
85000 24 27
85447 11 27
85447 22 27
85894 1 27
85894 21 27
86342 6 27
86342 18 27
86789 2 27
86789 17 27
87236 7 27
87236 13 27
88000 5 27
88000 24 27
88447 11 27
88447 22 27
88894 1 27
88894 21 27
89025 7 27
89025 13 27
89342 6 27
89342 18 27
89472 2 27
89472 17 27
89789 2 27
89789 17 27
89919 6 27
89919 18 27
90236 7 27
90236 13 27
90367 1 27
90367 21 27
90814 11 27
90814 22 27

 105

91000 5 27
91000 24 27
91261 5 27
91261 24 27
91447 11 27
91447 22 27
91894 1 27
91894 21 27
92025 7 27
92025 13 27
92342 6 27
92342 18 27
92472 2 27
92472 17 27
92789 2 27
92789 17 27
92919 6 27
92919 18 27
93236 7 27
93236 13 27
93367 1 27
93367 21 27
93814 11 27
93814 22 27
94000 5 27
94000 24 27
94261 5 27
94261 24 27
94447 11 27
94447 22 27
94894 1 27
94894 21 27
95025 7 27
95025 13 27
95342 6 27
95342 18 27
95472 2 27
95472 17 27
95789 2 27
95789 17 27
95919 6 27
95919 18 27
96236 7 27
96236 13 27
96367 1 27
96367 21 27
96814 11 27
96814 22 27
97000 5 27
97000 24 27
97261 5 27
97261 24 27
97447 11 27
97447 22 27
97894 1 27

 106

97894 21 27
98025 7 27
98025 13 27
98342 6 27
98342 18 27
98472 2 27
98472 17 27
98789 2 27
98789 17 27
98919 6 27
98919 18 27
99236 7 27
99236 13 27
99367 1 27
99367 21 27
99814 11 27
99814 22 27
100261 5 27
100261 24 27
101025 7 27
101025 13 27
101472 2 27
101472 17 27
101919 6 27
101919 18 27
102000 14 27
102000 19 27
102367 1 27
102367 21 27
102447 10 27
102447 23 27
102814 11 27
102814 22 27
102894 9 27
102894 15 27
103261 5 27
103261 24 27
103342 4 27
103342 20 27
103789 8 27
103789 12 27
104236 3 27
104236 16 27
105000 14 27
105000 14 27
105000 19 27
105000 19 27
105447 10 27
105447 23 27
105894 9 27
105894 15 27
106000 14 27
106000 19 27
106025 3 27
106025 16 27

 107

106342 4 27
106342 20 27
106472 8 27
106472 12 27
106789 8 27
106789 12 27
106919 4 27
106919 20 27
107236 3 27
107236 16 27
107367 9 27
107367 15 27
107814 10 27
107814 23 27
108000 14 27
108000 19 27
108261 14 27
108261 19 27
108447 10 27
108447 23 27
108894 9 27
108894 15 27
109025 3 27
109025 16 27
109342 4 27
109342 20 27
109472 8 27
109472 12 27
109789 8 27
109789 12 27
109919 4 27
109919 20 27
110236 3 27
110236 16 27
110367 9 27
110367 15 27
110814 10 27
110814 23 27
111000 14 27
111000 19 27
111261 14 27
111261 19 27
111447 10 27
111447 23 27
111894 9 27
111894 15 27
112000 5 27
112000 24 27
112025 3 27
112025 16 27
112194 9 27
112194 15 27
112342 4 27
112342 20 27
112472 8 27

 108

112472 12 27
112789 8 27
112789 12 27
112919 4 27
112919 20 27
113000 5 27
113000 24 27
113194 9 27
113194 15 27
113236 3 27
113236 16 27
113367 9 27
113367 15 27
113814 10 27
113814 23 27
114000 14 27
114000 19 27
114261 14 27
114261 19 27
114447 10 27
114447 23 27
114894 9 27
114894 15 27
115025 3 27
115025 16 27
115342 4 27
115342 20 27
115472 8 27
115472 12 27
115789 8 27
115789 12 27
115919 4 27
115919 20 27
116236 3 27
116236 16 27
116367 9 27
116367 15 27
116814 10 27
116814 23 27
117000 14 27
117000 19 27
117261 14 27
117261 19 27
117447 10 27
117447 23 27
117894 9 27
117894 15 27
118025 3 27
118025 16 27
118342 4 27
118342 20 27
118472 8 27
118472 12 27
118789 8 27
118789 12 27

 109

118919 4 27
118919 20 27
119194 1 27
119194 21 27
119236 3 27
119236 16 27
119367 9 27
119367 15 27
119388 8 27
119388 12 27
119814 10 27
119814 23 27
120194 1 27
120194 21 27
120261 14 27
120261 19 27
120388 8 27
120388 12 27
121025 3 27
121025 16 27
121472 8 27
121472 12 27
121919 4 27
121919 20 27
122000 5 27
122000 24 27
122367 9 27
122367 15 27
122447 11 27
122447 22 27
122814 10 27
122814 23 27
122894 1 27
122894 21 27
123261 14 27
123261 19 27
123342 6 27
123342 18 27
123789 2 27
123789 17 27
124236 7 27
124236 13 27
125000 5 27
125000 24 27
125447 11 27
125447 22 27
125894 1 27
125894 21 27
126025 7 27
126025 13 27
126342 6 27
126342 18 27
126388 2 27
126388 17 27
126472 2 27

 110

126472 17 27
126789 2 27
126789 17 27
126919 6 27
126919 18 27
127236 7 27
127236 13 27
127367 1 27
127367 21 27
127388 2 27
127388 17 27
127814 11 27
127814 22 27
128000 5 27
128000 24 27
128261 5 27
128261 24 27
128447 11 27
128447 22 27
128894 1 27
128894 21 27
129025 7 27
129025 13 27
129342 6 27
129342 18 27
129472 2 27
129472 17 27
129789 2 27
129789 17 27
129919 6 27
129919 18 27
130236 7 27
130236 13 27
130367 1 27
130367 21 27
130814 11 27
130814 22 27
131000 5 27
131000 24 27
131261 5 27
131261 24 27
131447 11 27
131447 22 27
131894 1 27
131894 21 27
132025 7 27
132025 13 27
132342 6 27
132342 18 27
132472 2 27
132472 17 27
132789 2 27
132789 17 27
132919 6 27
132919 18 27

 111

133236 7 27
133236 13 27
133367 1 27
133367 21 27
133814 11 27
133814 22 27
134000 5 27
134000 24 27
134261 5 27
134261 24 27
134447 11 27
134447 22 27
134894 1 27
134894 21 27
135025 7 27
135025 13 27
135342 6 27
135342 18 27
135472 2 27
135472 17 27
135789 2 27
135789 17 27
135919 6 27
135919 18 27
136236 7 27
136236 13 27
136367 1 27
136367 21 27
136814 11 27
136814 22 27
137000 5 27
137000 24 27
137261 5 27
137261 24 27
137374 3 27
137374 16 27
137447 11 27
137447 22 27
137894 1 27
137894 21 27
138025 7 27
138025 13 27
138342 6 27
138342 18 27
138374 3 27
138374 16 27
138472 2 27
138472 17 27
138789 2 27
138789 17 27
138919 6 27
138919 18 27
139236 7 27
139236 13 27
139367 1 27

 112

139367 21 27
139814 11 27
139814 22 27
140261 5 27
140261 24 27
141025 7 27
141025 13 27
141472 2 27
141472 17 27
141919 6 27
141919 18 27
142367 1 27
142367 21 27
142814 11 27
142814 22 27
143261 5 27
143261 24 27
144374 7 27
144374 13 27
144568 4 27
144568 20 27
145374 7 27
145374 13 27
145568 4 27
145568 20 27
151568 6 27
151568 18 27
151763 10 27
151763 23 27
152568 6 27
152568 18 27
152763 10 27
152763 23 27
158763 11 27
158763 22 27
159763 11 27
159763 22 27
];

end

%%%
% Scenario_22 %
%%%

function Scenario_22()

global Scenario_2;

Scenario_2 = [
0 14 27
0 19 27

 113

319 10 27
319 23 27
639 9 27
639 15 27
958 4 27
958 20 27
1278 8 27
1278 12 27
1597 3 27
1597 16 27
2875 3 27
2875 16 27
3195 8 27
3195 12 27
3514 4 27
3514 20 27
3834 9 27
3834 15 27
4153 10 27
4153 23 27
4473 14 27
4473 19 27
5000 5 27
5000 24 27
5319 11 27
5319 22 27
5639 1 27
5639 21 27
5958 6 27
5958 18 27
6278 2 27
6278 17 27
6597 7 27
6597 13 27
7875 7 27
7875 13 27
8195 2 27
8195 17 27
8514 6 27
8514 18 27
8834 1 27
8834 21 27
9153 11 27
9153 22 27
9473 5 27
9473 24 27
10000 14 27
10000 19 27
10319 10 27
10319 23 27
10639 9 27
10639 15 27
10958 4 27
10958 20 27
11278 8 27

 114

11278 12 27
11597 3 27
11597 16 27
12000 14 27
12000 19 27
12319 10 27
12319 23 27
12639 9 27
12639 15 27
12875 3 27
12875 16 27
12958 4 27
12958 20 27
13195 8 27
13195 12 27
13278 8 27
13278 12 27
13514 4 27
13514 20 27
13597 3 27
13597 16 27
13834 9 27
13834 15 27
14153 10 27
14153 23 27
14473 14 27
14473 19 27
14875 3 27
14875 16 27
15195 8 27
15195 12 27
15514 4 27
15514 20 27
15834 9 27
15834 15 27
16153 10 27
16153 23 27
16473 14 27
16473 19 27
17000 5 27
17000 24 27
17319 11 27
17319 22 27
17639 1 27
17639 21 27
17958 6 27
17958 18 27
18278 2 27
18278 17 27
18597 7 27
18597 13 27
19000 5 27
19000 24 27
19319 11 27
19319 22 27

 115

19639 1 27
19639 21 27
19875 7 27
19875 13 27
19958 6 27
19958 18 27
20195 2 27
20195 17 27
20278 2 27
20278 17 27
20514 6 27
20514 18 27
20597 7 27
20597 13 27
20834 1 27
20834 21 27
21153 11 27
21153 22 27
21473 5 27
21473 24 27
21875 7 27
21875 13 27
22195 2 27
22195 17 27
22514 6 27
22514 18 27
22834 1 27
22834 21 27
23000 14 27
23000 19 27
23153 11 27
23153 22 27
23319 10 27
23319 23 27
23473 5 27
23473 24 27
23639 9 27
23639 15 27
23958 4 27
23958 20 27
24278 8 27
24278 12 27
24597 3 27
24597 16 27
25000 14 27
25000 19 27
25319 10 27
25319 23 27
25639 9 27
25639 15 27
25875 3 27
25875 16 27
25958 4 27
25958 20 27
26195 8 27

 116

26195 12 27
26278 8 27
26278 12 27
26514 4 27
26514 20 27
26597 3 27
26597 16 27
26834 9 27
26834 15 27
27000 14 27
27000 19 27
27153 10 27
27153 23 27
27319 10 27
27319 23 27
27473 14 27
27473 19 27
27639 9 27
27639 15 27
27875 3 27
27875 16 27
27958 4 27
27958 20 27
28195 8 27
28195 12 27
28278 8 27
28278 12 27
28514 4 27
28514 20 27
28597 3 27
28597 16 27
28834 9 27
28834 15 27
29153 10 27
29153 23 27
29473 14 27
29473 19 27
29875 3 27
29875 16 27
30195 8 27
30195 12 27
30514 4 27
30514 20 27
30834 9 27
30834 15 27
31000 5 27
31000 24 27
31153 10 27
31153 23 27
31319 11 27
31319 22 27
31473 14 27
31473 19 27
31639 1 27
31639 21 27

 117

31958 6 27
31958 18 27
32278 2 27
32278 17 27
32597 7 27
32597 13 27
33000 5 27
33000 24 27
33319 11 27
33319 22 27
33639 1 27
33639 21 27
33875 7 27
33875 13 27
33958 6 27
33958 18 27
34195 2 27
34195 17 27
34278 2 27
34278 17 27
34514 6 27
34514 18 27
34597 7 27
34597 13 27
34834 1 27
34834 21 27
35000 5 27
35000 24 27
35153 11 27
35153 22 27
35319 11 27
35319 22 27
35473 5 27
35473 24 27
35639 1 27
35639 21 27
35875 7 27
35875 13 27
35958 6 27
35958 18 27
36195 2 27
36195 17 27
36278 2 27
36278 17 27
36514 6 27
36514 18 27
36597 7 27
36597 13 27
36834 1 27
36834 21 27
37153 11 27
37153 22 27
37473 5 27
37473 24 27
37875 7 27

 118

37875 13 27
38195 2 27
38195 17 27
38514 6 27
38514 18 27
38834 1 27
38834 21 27
39153 11 27
39153 22 27
39473 5 27
39473 24 27
41000 14 27
41000 19 27
41319 10 27
41319 23 27
41639 9 27
41639 15 27
41958 4 27
41958 20 27
42278 8 27
42278 12 27
42597 3 27
42597 16 27
43000 14 27
43000 19 27
43319 10 27
43319 23 27
43639 9 27
43639 15 27
43875 3 27
43875 16 27
43958 4 27
43958 20 27
44195 8 27
44195 12 27
44278 8 27
44278 12 27
44514 4 27
44514 20 27
44597 3 27
44597 16 27
44834 9 27
44834 15 27
45000 14 27
45000 19 27
45153 10 27
45153 23 27
45319 10 27
45319 23 27
45473 14 27
45473 19 27
45639 9 27
45639 15 27
45875 3 27
45875 16 27

 119

45958 4 27
45958 20 27
46195 8 27
46195 12 27
46278 8 27
46278 12 27
46514 4 27
46514 20 27
46597 3 27
46597 16 27
46834 9 27
46834 15 27
47000 14 27
47000 19 27
47153 10 27
47153 23 27
47319 10 27
47319 23 27
47473 14 27
47473 19 27
47639 9 27
47639 15 27
47875 3 27
47875 16 27
47958 4 27
47958 20 27
48195 8 27
48195 12 27
48278 8 27
48278 12 27
48514 4 27
48514 20 27
48597 3 27
48597 16 27
48834 9 27
48834 15 27
49153 10 27
49153 23 27
49473 14 27
49473 19 27
49875 3 27
49875 16 27
50000 5 27
50000 24 27
50195 8 27
50195 12 27
50319 11 27
50319 22 27
50514 4 27
50514 20 27
50639 1 27
50639 21 27
50834 9 27
50834 15 27
50958 6 27

 120

50958 18 27
51153 10 27
51153 23 27
51278 2 27
51278 17 27
51473 14 27
51473 19 27
51597 7 27
51597 13 27
52000 5 27
52000 24 27
52319 11 27
52319 22 27
52639 1 27
52639 21 27
52875 7 27
52875 13 27
52958 6 27
52958 18 27
53195 2 27
53195 17 27
53278 2 27
53278 17 27
53514 6 27
53514 18 27
53597 7 27
53597 13 27
53834 1 27
53834 21 27
54000 5 27
54000 24 27
54153 11 27
54153 22 27
54319 11 27
54319 22 27
54473 5 27
54473 24 27
54639 1 27
54639 21 27
54875 7 27
54875 13 27
54958 6 27
54958 18 27
55195 2 27
55195 17 27
55278 2 27
55278 17 27
55514 6 27
55514 18 27
55597 7 27
55597 13 27
55834 1 27
55834 21 27
56000 5 27
56000 24 27

 121

56153 11 27
56153 22 27
56319 11 27
56319 22 27
56473 5 27
56473 24 27
56639 1 27
56639 21 27
56875 7 27
56875 13 27
56958 6 27
56958 18 27
57195 2 27
57195 17 27
57278 2 27
57278 17 27
57514 6 27
57514 18 27
57597 7 27
57597 13 27
57834 1 27
57834 21 27
58153 11 27
58153 22 27
58473 5 27
58473 24 27
58875 7 27
58875 13 27
59195 2 27
59195 17 27
59514 6 27
59514 18 27
59834 1 27
59834 21 27
60000 14 27
60000 14 27
60000 19 27
60000 19 27
60153 11 27
60153 22 27
60319 10 27
60319 23 27
60473 5 27
60473 24 27
60500 14 27
60500 19 27
60639 9 27
60639 15 27
60958 4 27
60958 20 27
61000 19 27
61000 14 27
61278 8 27
61278 12 27
61500 19 27

 122

61500 14 27
61597 3 27
61597 16 27
62000 14 27
62000 19 27
62319 10 27
62319 23 27
62639 9 27
62639 15 27
62875 3 27
62875 16 27
62958 4 27
62958 20 27
63195 8 27
63195 12 27
63278 8 27
63278 12 27
63514 4 27
63514 20 27
63597 3 27
63597 16 27
63834 9 27
63834 15 27
64000 14 27
64000 19 27
64153 10 27
64153 23 27
64319 10 27
64319 23 27
64473 14 27
64473 19 27
64639 9 27
64639 15 27
64875 3 27
64875 16 27
64958 4 27
64958 20 27
65195 8 27
65195 12 27
65278 8 27
65278 12 27
65514 4 27
65514 20 27
65597 3 27
65597 16 27
65834 9 27
65834 15 27
66000 14 27
66000 19 27
66153 10 27
66153 23 27
66319 10 27
66319 23 27
66473 14 27
66473 19 27

 123

66639 9 27
66639 15 27
66875 3 27
66875 16 27
66958 4 27
66958 20 27
67194 9 27
67194 15 27
67195 8 27
67195 12 27
67278 8 27
67278 12 27
67514 4 27
67514 20 27
67597 3 27
67597 16 27
67694 9 27
67694 15 27
67834 9 27
67834 15 27
68000 14 27
68000 19 27
68153 10 27
68153 23 27
68194 15 27
68194 9 27
68319 10 27
68319 23 27
68473 14 27
68473 19 27
68639 9 27
68639 15 27
68694 15 27
68694 9 27
68875 3 27
68875 16 27
68958 4 27
68958 20 27
69195 8 27
69195 12 27
69278 8 27
69278 12 27
69514 4 27
69514 20 27
69597 3 27
69597 16 27
69834 9 27
69834 15 27
70000 5 27
70000 24 27
70153 10 27
70153 23 27
70473 14 27
70473 19 27
70875 3 27

 124

70875 16 27
71000 5 27
71000 24 27
71195 8 27
71195 12 27
71514 4 27
71514 20 27
71834 9 27
71834 15 27
72000 5 27
72000 24 27
72153 10 27
72153 23 27
72319 11 27
72319 22 27
72473 14 27
72473 19 27
72639 1 27
72639 21 27
72958 6 27
72958 18 27
73278 2 27
73278 17 27
73597 7 27
73597 13 27
74000 5 27
74000 24 27
74319 11 27
74319 22 27
74388 8 27
74388 12 27
74639 1 27
74639 21 27
74875 7 27
74875 13 27
74888 8 27
74888 12 27
74958 6 27
74958 18 27
75195 2 27
75195 17 27
75278 2 27
75278 17 27
75388 12 27
75388 8 27
75514 6 27
75514 18 27
75597 7 27
75597 13 27
75834 1 27
75834 21 27
75888 12 27
75888 8 27
76000 5 27
76000 5 27

 125

76000 24 27
76000 24 27
76153 11 27
76153 22 27
76319 11 27
76319 11 27
76319 22 27
76319 22 27
76473 5 27
76473 24 27
76639 1 27
76639 1 27
76639 21 27
76639 21 27
76875 7 27
76875 13 27
76958 6 27
76958 6 27
76958 18 27
76958 18 27
77194 1 27
77194 21 27
77195 2 27
77195 17 27
77278 2 27
77278 2 27
77278 17 27
77278 17 27
77514 6 27
77514 18 27
77597 7 27
77597 7 27
77597 13 27
77597 13 27
77834 1 27
77834 21 27
78000 5 27
78000 24 27
78153 11 27
78153 22 27
78194 1 27
78194 21 27
78319 11 27
78319 22 27
78473 5 27
78473 24 27
78639 1 27
78639 21 27
78875 7 27
78875 7 27
78875 13 27
78875 13 27
78958 6 27
78958 18 27
79195 2 27

 126

79195 2 27
79195 17 27
79195 17 27
79278 2 27
79278 17 27
79514 6 27
79514 6 27
79514 18 27
79514 18 27
79597 7 27
79597 13 27
79834 1 27
79834 1 27
79834 21 27
79834 21 27
80000 5 27
80000 24 27
80153 11 27
80153 11 27
80153 22 27
80153 22 27
80319 11 27
80319 22 27
80473 5 27
80473 5 27
80473 24 27
80473 24 27
80639 1 27
80639 21 27
80875 7 27
80875 13 27
80958 6 27
80958 18 27
81195 2 27
81195 17 27
81278 2 27
81278 17 27
81514 6 27
81514 18 27
81597 7 27
81597 13 27
81834 1 27
81834 21 27
82153 11 27
82153 22 27
82473 5 27
82473 24 27
82875 7 27
82875 13 27
83195 2 27
83195 17 27
83514 6 27
83514 18 27
83834 1 27
83834 21 27

 127

84153 11 27
84153 22 27
84388 2 27
84388 17 27
84473 5 27
84473 24 27
85000 14 27
85000 19 27
85319 10 27
85319 23 27
85388 2 27
85388 17 27
85639 9 27
85639 15 27
85958 4 27
85958 20 27
86278 8 27
86278 12 27
86597 3 27
86597 16 27
87000 14 27
87000 19 27
87319 10 27
87319 23 27
87639 9 27
87639 15 27
87875 3 27
87875 16 27
87958 4 27
87958 20 27
88195 8 27
88195 12 27
88278 8 27
88278 12 27
88514 4 27
88514 20 27
88597 3 27
88597 16 27
88834 9 27
88834 15 27
89000 14 27
89000 19 27
89153 10 27
89153 23 27
89319 10 27
89319 23 27
89473 14 27
89473 19 27
89639 9 27
89639 15 27
89875 3 27
89875 16 27
89958 4 27
89958 20 27
90195 8 27

 128

90195 12 27
90278 8 27
90278 12 27
90514 4 27
90514 20 27
90597 3 27
90597 16 27
90834 9 27
90834 15 27
91000 14 27
91000 19 27
91153 10 27
91153 23 27
91319 10 27
91319 23 27
91473 14 27
91473 19 27
91639 9 27
91639 15 27
91875 3 27
91875 16 27
91958 4 27
91958 20 27
92195 8 27
92195 12 27
92278 8 27
92278 12 27
92374 3 27
92374 16 27
92514 4 27
92514 20 27
92597 3 27
92597 16 27
92834 9 27
92834 15 27
92874 3 27
92874 16 27
93000 14 27
93000 19 27
93153 10 27
93153 23 27
93319 10 27
93319 23 27
93374 3 27
93374 16 27
93473 14 27
93473 19 27
93639 9 27
93639 15 27
93874 3 27
93874 16 27
93875 3 27
93875 16 27
93958 4 27
93958 20 27

 129

94195 8 27
94195 12 27
94278 8 27
94278 12 27
94514 4 27
94514 20 27
94597 3 27
94597 16 27
94834 9 27
94834 15 27
95000 14 27
95000 19 27
95153 10 27
95153 23 27
95319 10 27
95319 23 27
95473 14 27
95473 19 27
95639 9 27
95639 15 27
95875 3 27
95875 16 27
95958 4 27
95958 20 27
96195 8 27
96195 12 27
96278 8 27
96278 12 27
96514 4 27
96514 20 27
96597 3 27
96597 16 27
96834 9 27
96834 15 27
97153 10 27
97153 23 27
97473 14 27
97473 19 27
97875 3 27
97875 16 27
98195 8 27
98195 12 27
98514 4 27
98514 20 27
98834 9 27
98834 15 27
99153 10 27
99153 23 27
99473 14 27
99473 19 27
99568 4 27
99568 20 27
100000 5 27
100000 24 27
100068 4 27

 130

100068 20 27
100319 11 27
100319 22 27
100568 4 27
100568 20 27
100639 1 27
100639 21 27
100958 6 27
100958 18 27
101068 4 27
101068 20 27
101278 2 27
101278 17 27
101597 7 27
101597 13 27
102000 5 27
102000 24 27
102319 11 27
102319 22 27
102374 7 27
102374 13 27
102639 1 27
102639 21 27
102875 7 27
102875 13 27
102958 6 27
102958 18 27
103195 2 27
103195 17 27
103278 2 27
103278 17 27
103374 7 27
103374 13 27
103514 6 27
103514 18 27
103597 7 27
103597 13 27
103834 1 27
103834 21 27
104000 5 27
104000 24 27
104153 11 27
104153 22 27
104319 11 27
104319 22 27
104473 5 27
104473 24 27
104639 1 27
104639 21 27
104875 7 27
104875 13 27
104958 6 27
104958 18 27
105195 2 27
105195 17 27

 131

105278 2 27
105278 17 27
105514 6 27
105514 18 27
105597 7 27
105597 13 27
105834 1 27
105834 21 27
106000 5 27
106000 24 27
106153 11 27
106153 22 27
106319 11 27
106319 22 27
106473 5 27
106473 24 27
106639 1 27
106639 21 27
106763 10 27
106763 23 27
106875 7 27
106875 13 27
106958 6 27
106958 18 27
107195 2 27
107195 17 27
107263 10 27
107263 23 27
107278 2 27
107278 17 27
107514 6 27
107514 18 27
107597 7 27
107597 13 27
107763 10 27
107763 23 27
107834 1 27
107834 21 27
108000 5 27
108000 24 27
108153 11 27
108153 22 27
108263 10 27
108263 23 27
108319 11 27
108319 22 27
108473 5 27
108473 24 27
108639 1 27
108639 21 27
108875 7 27
108875 13 27
108958 6 27
108958 18 27
109195 2 27

 132

109195 17 27
109278 2 27
109278 17 27
109514 6 27
109514 18 27
109568 6 27
109568 18 27
109597 7 27
109597 13 27
109834 1 27
109834 21 27
110000 5 27
110000 24 27
110153 11 27
110153 22 27
110319 11 27
110319 22 27
110473 5 27
110473 24 27
110568 6 27
110568 18 27
110639 1 27
110639 21 27
110875 7 27
110875 13 27
110958 6 27
110958 18 27
111195 2 27
111195 17 27
111278 2 27
111278 17 27
111514 6 27
111514 18 27
111597 7 27
111597 13 27
111834 1 27
111834 21 27
112153 11 27
112153 22 27
112473 5 27
112473 24 27
112875 7 27
112875 13 27
113195 2 27
113195 17 27
113514 6 27
113514 18 27
113834 1 27
113834 21 27
114153 11 27
114153 22 27
114473 5 27
114473 24 27
116763 11 27
116763 22 27

 133

117763 11 27
117763 22 27
];

end

%%%
% Scenario_33 %
%%%

function Scenario_33()

global Scenario_3;

%time originating node destination node
Scenario_3 = [
0 19 27
0 14 27
249 23 27
249 10 27
497 15 27
497 9 27
746 20 27
746 4 27
994 12 27
994 8 27
1243 16 27
1243 3 27
2000 19 27
2000 14 27
2237 3 27
2237 16 27
2249 23 27
2249 10 27
2485 8 27
2485 12 27
2497 15 27
2497 9 27
2734 4 27
2734 20 27
2746 20 27
2746 4 27
2982 9 27
2982 15 27
2994 12 27
2994 8 27
3231 10 27
3231 23 27
3243 16 27
3243 3 27
3479 14 27
3479 19 27

 134

4000 19 27
4000 14 27
4237 3 27
4237 16 27
4249 23 27
4249 10 27
4485 8 27
4485 12 27
4497 15 27
4497 9 27
4734 4 27
4734 20 27
4746 20 27
4746 4 27
4982 9 27
4982 15 27
4994 12 27
4994 8 27
5231 10 27
5231 23 27
5243 16 27
5243 3 27
5479 14 27
5479 19 27
6000 19 27
6000 14 27
6237 3 27
6237 16 27
6249 23 27
6249 10 27
6485 8 27
6485 12 27
6497 15 27
6497 9 27
6734 4 27
6734 20 27
6746 20 27
6746 4 27
6982 9 27
6982 15 27
6994 12 27
6994 8 27
7231 10 27
7231 23 27
7243 16 27
7243 3 27
7479 14 27
7479 19 27
8000 19 27
8000 14 27
8237 3 27
8237 16 27
8249 23 27
8249 10 27
8485 8 27

 135

8485 12 27
8497 15 27
8497 9 27
8734 4 27
8734 20 27
8746 20 27
8746 4 27
8982 9 27
8982 15 27
8994 12 27
8994 8 27
9231 10 27
9231 23 27
9243 16 27
9243 3 27
9479 14 27
9479 19 27
10237 3 27
10237 16 27
10485 8 27
10485 12 27
10734 4 27
10734 20 27
10982 9 27
10982 15 27
11231 10 27
11231 23 27
11479 14 27
11479 19 27
12000 24 27
12000 5 27
12249 22 27
12249 11 27
12497 21 27
12497 1 27
12746 18 27
12746 6 27
12994 17 27
12994 2 27
13243 13 27
13243 7 27
14000 24 27
14000 5 27
14237 7 27
14237 13 27
14249 22 27
14249 11 27
14485 2 27
14485 17 27
14497 21 27
14497 1 27
14734 6 27
14734 18 27
14746 18 27
14746 6 27

 136

14982 1 27
14982 21 27
14994 17 27
14994 2 27
15231 11 27
15231 22 27
15243 13 27
15243 7 27
15479 5 27
15479 24 27
16000 24 27
16000 5 27
16237 7 27
16237 13 27
16249 22 27
16249 11 27
16485 2 27
16485 17 27
16497 21 27
16497 1 27
16734 6 27
16734 18 27
16746 18 27
16746 6 27
16982 1 27
16982 21 27
16994 17 27
16994 2 27
17231 11 27
17231 22 27
17243 13 27
17243 7 27
17479 5 27
17479 24 27
18000 24 27
18000 5 27
18237 7 27
18237 13 27
18249 22 27
18249 11 27
18485 2 27
18485 17 27
18497 21 27
18497 1 27
18734 6 27
18734 18 27
18746 18 27
18746 6 27
18982 1 27
18982 21 27
18994 17 27
18994 2 27
19231 11 27
19231 22 27
19243 13 27

 137

19243 7 27
19479 5 27
19479 24 27
20000 24 27
20000 5 27
20237 7 27
20237 13 27
20249 22 27
20249 11 27
20485 2 27
20485 17 27
20497 21 27
20497 1 27
20734 6 27
20734 18 27
20746 18 27
20746 6 27
20982 1 27
20982 21 27
20994 17 27
20994 2 27
21231 11 27
21231 22 27
21243 13 27
21243 7 27
21479 5 27
21479 24 27
22237 7 27
22237 13 27
22485 2 27
22485 17 27
22734 6 27
22734 18 27
22982 1 27
22982 21 27
23231 11 27
23231 22 27
23479 5 27
23479 24 27
24000 19 27
24000 14 27
24249 23 27
24249 10 27
24497 15 27
24497 9 27
24746 20 27
24746 4 27
24994 12 27
24994 8 27
25243 16 27
25243 3 27
26000 19 27
26000 14 27
26237 3 27
26237 16 27

 138

26249 23 27
26249 10 27
26485 8 27
26485 12 27
26497 15 27
26497 9 27
26734 4 27
26734 20 27
26746 20 27
26746 4 27
26982 9 27
26982 15 27
26994 12 27
26994 8 27
27231 10 27
27231 23 27
27243 16 27
27243 3 27
27479 14 27
27479 19 27
28000 19 27
28000 14 27
28237 3 27
28237 16 27
28249 23 27
28249 10 27
28485 8 27
28485 12 27
28497 15 27
28497 9 27
28734 4 27
28734 20 27
28746 20 27
28746 4 27
28982 9 27
28982 15 27
28994 12 27
28994 8 27
29231 10 27
29231 23 27
29243 16 27
29243 3 27
29479 14 27
29479 19 27
30000 19 27
30000 14 27
30000 19 27
30000 14 27
30237 3 27
30237 16 27
30249 23 27
30249 10 27
30485 8 27
30485 12 27
30497 15 27

 139

30497 9 27
30734 4 27
30734 20 27
30746 20 27
30746 4 27
30982 9 27
30982 15 27
30994 12 27
30994 8 27
31231 10 27
31231 23 27
31243 16 27
31243 3 27
31479 14 27
31479 19 27
32000 19 27
32000 14 27
32237 3 27
32237 16 27
32249 23 27
32249 10 27
32485 8 27
32485 12 27
32497 15 27
32497 9 27
32734 4 27
32734 20 27
32746 20 27
32746 4 27
32982 9 27
32982 15 27
32994 12 27
32994 8 27
33231 10 27
33231 23 27
33243 16 27
33243 3 27
33479 14 27
33479 19 27
34237 3 27
34237 16 27
34485 8 27
34485 12 27
34734 4 27
34734 20 27
34982 9 27
34982 15 27
35231 10 27
35231 23 27
35479 14 27
35479 19 27
36000 24 27
36000 5 27
36249 22 27
36249 11 27

 140

36497 21 27
36497 1 27
36746 18 27
36746 6 27
36994 17 27
36994 2 27
37194 15 27
37194 9 27
37243 13 27
37243 7 27
38000 24 27
38000 5 27
38237 7 27
38237 13 27
38249 22 27
38249 11 27
38485 2 27
38485 17 27
38497 21 27
38497 1 27
38734 6 27
38734 18 27
38746 18 27
38746 6 27
38982 1 27
38982 21 27
38994 17 27
38994 2 27
39231 11 27
39231 22 27
39243 13 27
39243 7 27
39479 5 27
39479 24 27
40000 24 27
40000 5 27
40237 7 27
40237 13 27
40249 22 27
40249 11 27
40485 2 27
40485 17 27
40497 21 27
40497 1 27
40734 6 27
40734 18 27
40746 18 27
40746 6 27
40982 1 27
40982 21 27
40994 17 27
40994 2 27
41231 11 27
41231 22 27
41243 13 27

 141

41243 7 27
41479 5 27
41479 24 27
42000 24 27
42000 5 27
42237 7 27
42237 13 27
42249 22 27
42249 11 27
42485 2 27
42485 17 27
42497 21 27
42497 1 27
42734 6 27
42734 18 27
42746 18 27
42746 6 27
42982 1 27
42982 21 27
42994 17 27
42994 2 27
43231 11 27
43231 22 27
43243 13 27
43243 7 27
43479 5 27
43479 24 27
44000 24 27
44000 5 27
44237 7 27
44237 13 27
44249 22 27
44249 11 27
44388 12 27
44388 8 27
44485 2 27
44485 17 27
44497 21 27
44497 1 27
44734 6 27
44734 18 27
44746 18 27
44746 6 27
44982 1 27
44982 21 27
44994 17 27
44994 2 27
45231 11 27
45231 22 27
45243 13 27
45243 7 27
45479 5 27
45479 24 27
46237 7 27
46237 13 27

 142

46485 2 27
46485 17 27
46734 6 27
46734 18 27
46982 1 27
46982 21 27
47231 11 27
47231 22 27
47479 5 27
47479 24 27
48000 19 27
48000 14 27
48249 23 27
48249 10 27
48497 15 27
48497 9 27
48746 20 27
48746 4 27
48994 12 27
48994 8 27
49243 16 27
49243 3 27
50000 19 27
50000 14 27
50000 5 27
50000 24 27
50237 3 27
50237 16 27
50249 23 27
50249 10 27
50485 8 27
50485 12 27
50497 15 27
50497 9 27
50734 4 27
50734 20 27
50746 20 27
50746 4 27
50982 9 27
50982 15 27
50994 12 27
50994 8 27
51231 10 27
51231 23 27
51243 16 27
51243 3 27
51479 14 27
51479 19 27
52000 19 27
52000 14 27
52237 3 27
52237 16 27
52249 23 27
52249 10 27
52485 8 27

 143

52485 12 27
52497 15 27
52497 9 27
52734 4 27
52734 20 27
52746 20 27
52746 4 27
52982 9 27
52982 15 27
52994 12 27
52994 8 27
53231 10 27
53231 23 27
53243 16 27
53243 3 27
53479 14 27
53479 19 27
54000 19 27
54000 14 27
54237 3 27
54237 16 27
54249 23 27
54249 10 27
54485 8 27
54485 12 27
54497 15 27
54497 9 27
54734 4 27
54734 20 27
54746 20 27
54746 4 27
54982 9 27
54982 15 27
54994 12 27
54994 8 27
55231 10 27
55231 23 27
55243 16 27
55243 3 27
55479 14 27
55479 19 27
56000 19 27
56000 14 27
56237 3 27
56237 16 27
56249 23 27
56249 10 27
56485 8 27
56485 12 27
56497 15 27
56497 9 27
56734 4 27
56734 20 27
56746 20 27
56746 4 27

 144

56982 9 27
56982 15 27
56994 12 27
56994 8 27
57194 1 27
57194 21 27
57231 10 27
57231 23 27
57243 16 27
57243 3 27
57479 14 27
57479 19 27
58237 3 27
58237 16 27
58485 8 27
58485 12 27
58734 4 27
58734 20 27
58982 9 27
58982 15 27
59231 10 27
59231 23 27
59479 14 27
59479 19 27
60000 24 27
60000 5 27
60249 22 27
60249 11 27
60497 21 27
60497 1 27
60746 18 27
60746 6 27
60994 17 27
60994 2 27
61243 13 27
61243 7 27
62000 24 27
62000 5 27
62237 7 27
62237 13 27
62249 22 27
62249 11 27
62374 3 27
62374 16 27
62485 2 27
62485 17 27
62497 21 27
62497 1 27
62734 6 27
62734 18 27
62746 18 27
62746 6 27
62982 1 27
62982 21 27
62994 17 27

 145

62994 2 27
63231 11 27
63231 22 27
63243 13 27
63243 7 27
63479 5 27
63479 24 27
64000 24 27
64000 5 27
64237 7 27
64237 13 27
64249 22 27
64249 11 27
64388 2 27
64388 17 27
64485 2 27
64485 17 27
64497 21 27
64497 1 27
64734 6 27
64734 18 27
64746 18 27
64746 6 27
64982 1 27
64982 21 27
64994 17 27
64994 2 27
65231 11 27
65231 22 27
65243 13 27
65243 7 27
65479 5 27
65479 24 27
66000 24 27
66000 5 27
66237 7 27
66237 13 27
66249 22 27
66249 11 27
66485 2 27
66485 17 27
66497 21 27
66497 1 27
66734 6 27
66734 18 27
66746 18 27
66746 6 27
66982 1 27
66982 21 27
66994 17 27
66994 2 27
67231 11 27
67231 22 27
67243 13 27
67243 7 27

 146

67479 5 27
67479 24 27
68000 24 27
68000 5 27
68237 7 27
68237 13 27
68249 22 27
68249 11 27
68485 2 27
68485 17 27
68497 21 27
68497 1 27
68734 6 27
68734 18 27
68746 18 27
68746 6 27
68982 1 27
68982 21 27
68994 17 27
68994 2 27
69231 11 27
69231 22 27
69243 13 27
69243 7 27
69479 5 27
69479 24 27
69568 4 27
69568 20 27
70237 7 27
70237 13 27
70485 2 27
70485 17 27
70734 6 27
70734 18 27
70982 1 27
70982 21 27
71231 11 27
71231 22 27
71479 5 27
71479 24 27
72000 19 27
72000 14 27
72249 23 27
72249 10 27
72497 15 27
72497 9 27
72746 20 27
72746 4 27
72994 12 27
72994 8 27
73243 16 27
73243 3 27
74000 19 27
74000 14 27
74237 3 27

 147

74237 16 27
74249 23 27
74249 10 27
74485 8 27
74485 12 27
74497 15 27
74497 9 27
74734 4 27
74734 20 27
74746 20 27
74746 4 27
74982 9 27
74982 15 27
74994 12 27
74994 8 27
75231 10 27
75231 23 27
75243 16 27
75243 3 27
75479 14 27
75479 19 27
76000 19 27
76000 14 27
76237 3 27
76237 16 27
76249 23 27
76249 10 27
76485 8 27
76485 12 27
76497 15 27
76497 9 27
76734 4 27
76734 20 27
76746 20 27
76746 4 27
76763 10 27
76763 23 27
76982 9 27
76982 15 27
76994 12 27
76994 8 27
77231 10 27
77231 23 27
77243 16 27
77243 3 27
77479 14 27
77479 19 27
78000 19 27
78000 14 27
78237 3 27
78237 16 27
78249 23 27
78249 10 27
78485 8 27
78485 12 27

 148

78497 15 27
78497 9 27
78734 4 27
78734 20 27
78746 20 27
78746 4 27
78982 9 27
78982 15 27
78994 12 27
78994 8 27
79231 10 27
79231 23 27
79243 16 27
79243 3 27
79479 14 27
79479 19 27
80000 19 27
80000 14 27
80237 3 27
80237 16 27
80249 23 27
80249 10 27
80485 8 27
80485 12 27
80497 15 27
80497 9 27
80734 4 27
80734 20 27
80746 20 27
80746 4 27
80982 9 27
80982 15 27
80994 12 27
80994 8 27
81231 10 27
81231 23 27
81243 16 27
81243 3 27
81479 14 27
81479 19 27
82237 3 27
82237 16 27
82374 13 27
82374 7 27
82485 8 27
82485 12 27
82734 4 27
82734 20 27
82982 9 27
82982 15 27
83231 10 27
83231 23 27
83479 14 27
83479 19 27
84000 24 27

 149

84000 5 27
84249 22 27
84249 11 27
84497 21 27
84497 1 27
84746 18 27
84746 6 27
84994 17 27
84994 2 27
85243 13 27
85243 7 27
86000 24 27
86000 5 27
86237 7 27
86237 13 27
86249 22 27
86249 11 27
86485 2 27
86485 17 27
86497 21 27
86497 1 27
86734 6 27
86734 18 27
86746 18 27
86746 6 27
86982 1 27
86982 21 27
86994 17 27
86994 2 27
87231 11 27
87231 22 27
87243 13 27
87243 7 27
87479 5 27
87479 24 27
88000 24 27
88000 5 27
88237 7 27
88237 13 27
88249 22 27
88249 11 27
88485 2 27
88485 17 27
88497 21 27
88497 1 27
88734 6 27
88734 18 27
88746 18 27
88746 6 27
88982 1 27
88982 21 27
88994 17 27
88994 2 27
89231 11 27
89231 22 27

 150

89243 13 27
89243 7 27
89479 5 27
89479 24 27
89568 18 27
89568 6 27
90000 24 27
90000 5 27
90237 7 27
90237 13 27
90249 22 27
90249 11 27
90485 2 27
90485 17 27
90497 21 27
90497 1 27
90734 6 27
90734 18 27
90746 18 27
90746 6 27
90982 1 27
90982 21 27
90994 17 27
90994 2 27
91231 11 27
91231 22 27
91243 13 27
91243 7 27
91479 5 27
91479 24 27
92000 24 27
92000 5 27
92237 7 27
92237 13 27
92249 22 27
92249 11 27
92485 2 27
92485 17 27
92497 21 27
92497 1 27
92734 6 27
92734 18 27
92746 18 27
92746 6 27
92982 1 27
92982 21 27
92994 17 27
92994 2 27
93231 11 27
93231 22 27
93243 13 27
93243 7 27
93479 5 27
93479 24 27
94237 7 27

 151

94237 13 27
94485 2 27
94485 17 27
94734 6 27
94734 18 27
94982 1 27
94982 21 27
95231 11 27
95231 22 27
95479 5 27
95479 24 27
96763 22 27
96763 11 27
];

end

%%%
% Scenario_44 %
%%%

function Scenario_44()

global Scenario_4;

%time originating node destination node
Scenario_4 = [
0 19 27
172 23 27
344 15 27
516 20 27
688 12 27
860 16 27
1549 3 27
1721 8 27
1893 4 27
2065 9 27
2237 10 27
2409 14 27
0 14 27
172 10 27
344 9 27
516 4 27
688 8 27
860 3 27
1549 16 27
1721 12 27
1893 20 27
2065 15 27
2237 23 27
2409 19 27
2000 19 27

 152

2172 23 27
2344 15 27
2516 20 27
2688 12 27
2860 16 27
3549 3 27
3721 8 27
3893 4 27
4065 9 27
4237 10 27
4409 14 27
2000 14 27
2172 10 27
2344 9 27
2516 4 27
2688 8 27
2860 3 27
3549 16 27
3721 12 27
3893 20 27
4065 15 27
4237 23 27
4409 19 27
4000 19 27
4172 23 27
4344 15 27
4516 20 27
4688 12 27
4860 16 27
5549 3 27
5721 8 27
5893 4 27
6065 9 27
6237 10 27
6409 14 27
4000 14 27
4172 10 27
4344 9 27
4516 4 27
4688 8 27
4860 3 27
5549 16 27
5721 12 27
5893 20 27
6065 15 27
6237 23 27
6409 19 27
6000 19 27
6172 23 27
6344 15 27
6516 20 27
6688 12 27
6860 16 27
7549 3 27
7721 8 27

 153

7893 4 27
8065 9 27
8237 10 27
8409 14 27
6000 14 27
6172 10 27
6344 9 27
6516 4 27
6688 8 27
6860 3 27
7549 16 27
7721 12 27
7893 20 27
8065 15 27
8237 23 27
8409 19 27
8000 19 27
8172 23 27
8344 15 27
8516 20 27
8688 12 27
8860 16 27
9549 3 27
9721 8 27
9893 4 27
10065 9 27
10237 10 27
10409 14 27
8000 14 27
8172 10 27
8344 9 27
8516 4 27
8688 8 27
8860 3 27
9549 16 27
9721 12 27
9893 20 27
10065 15 27
10237 23 27
10409 19 27
12000 24 27
12172 22 27
12344 21 27
12516 18 27
12688 17 27
12860 13 27
13549 7 27
13721 2 27
13893 6 27
14065 1 27
14237 11 27
14409 5 27
12000 5 27
12172 11 27
12344 1 27

 154

12516 6 27
12688 2 27
12860 7 27
13549 13 27
13721 17 27
13893 18 27
14065 21 27
14237 22 27
14409 24 27
14000 24 27
14172 22 27
14344 21 27
14516 18 27
14688 17 27
14860 13 27
15549 7 27
15721 2 27
15893 6 27
16065 1 27
16237 11 27
16409 5 27
14000 5 27
14172 11 27
14344 1 27
14516 6 27
14688 2 27
14860 7 27
15549 13 27
15721 17 27
15893 18 27
16065 21 27
16237 22 27
16409 24 27
16000 24 27
16172 22 27
16344 21 27
16516 18 27
16688 17 27
16860 13 27
17549 7 27
17721 2 27
17893 6 27
18065 1 27
18237 11 27
18409 5 27
16000 5 27
16172 11 27
16344 1 27
16516 6 27
16688 2 27
16860 7 27
17549 13 27
17721 17 27
17893 18 27
18065 21 27

 155

18237 22 27
18409 24 27
18000 24 27
18172 22 27
18344 21 27
18516 18 27
18688 17 27
18860 13 27
19549 7 27
19721 2 27
19893 6 27
20065 1 27
20237 11 27
20409 5 27
18000 5 27
18172 11 27
18344 1 27
18516 6 27
18688 2 27
18860 7 27
19549 13 27
19721 17 27
19893 18 27
20065 21 27
20237 22 27
20409 24 27
20000 24 27
20172 22 27
20344 21 27
20516 18 27
20688 17 27
20860 13 27
21549 7 27
21721 2 27
21893 6 27
22065 1 27
22237 11 27
22409 5 27
20000 5 27
20172 11 27
20344 1 27
20516 6 27
20688 2 27
20860 7 27
21549 13 27
21721 17 27
21893 18 27
22065 21 27
22237 22 27
22409 24 27
24000 19 27
24172 23 27
24344 15 27
24516 20 27
24688 12 27

 156

24860 16 27
25549 3 27
25721 8 27
25893 4 27
26065 9 27
26237 10 27
26409 14 27
24000 14 27
24172 10 27
24344 9 27
24516 4 27
24688 8 27
24860 3 27
25549 16 27
25721 12 27
25893 20 27
26065 15 27
26237 23 27
26409 19 27
26000 19 27
26172 23 27
26344 15 27
26516 20 27
26688 12 27
26860 16 27
27549 3 27
27721 8 27
27893 4 27
28065 9 27
28237 10 27
28409 14 27
26000 14 27
26172 10 27
26344 9 27
26516 4 27
26688 8 27
26860 3 27
27549 16 27
27721 12 27
27893 20 27
28065 15 27
28237 23 27
28409 19 27
28000 19 27
28172 23 27
28344 15 27
28516 20 27
28688 12 27
28860 16 27
29549 3 27
29721 8 27
29893 4 27
30065 9 27
30237 10 27
30409 14 27

 157

28000 14 27
28172 10 27
28344 9 27
28516 4 27
28688 8 27
28860 3 27
29549 16 27
29721 12 27
29893 20 27
30065 15 27
30237 23 27
30409 19 27
30000 19 27
30172 23 27
30344 15 27
30516 20 27
30688 12 27
30860 16 27
31549 3 27
31721 8 27
31893 4 27
32065 9 27
32237 10 27
32409 14 27
30000 14 27
30172 10 27
30344 9 27
30516 4 27
30688 8 27
30860 3 27
31549 16 27
31721 12 27
31893 20 27
32065 15 27
32237 23 27
32409 19 27
32000 19 27
32172 23 27
32344 15 27
32516 20 27
32688 12 27
32860 16 27
33549 3 27
33721 8 27
33893 4 27
34065 9 27
34237 10 27
34409 14 27
32000 14 27
32172 10 27
32344 9 27
32516 4 27
32688 8 27
32860 3 27
33549 16 27

 158

33721 12 27
33893 20 27
34065 15 27
34237 23 27
34409 19 27
36000 24 27
36172 22 27
36344 21 27
36516 18 27
36688 17 27
36860 13 27
37549 7 27
37721 2 27
37893 6 27
38065 1 27
38237 11 27
38409 5 27
36000 5 27
36172 11 27
36344 1 27
36516 6 27
36688 2 27
36860 7 27
37549 13 27
37721 17 27
37893 18 27
38065 21 27
38237 22 27
38409 24 27
38000 24 27
38172 22 27
38344 21 27
38516 18 27
38688 17 27
38860 13 27
39549 7 27
39721 2 27
39893 6 27
40065 1 27
40237 11 27
40409 5 27
38000 5 27
38172 11 27
38344 1 27
38516 6 27
38688 2 27
38860 7 27
39549 13 27
39721 17 27
39893 18 27
40065 21 27
40237 22 27
40409 24 27
40000 24 27
40172 22 27

 159

40344 21 27
40516 18 27
40688 17 27
40860 13 27
41549 7 27
41721 2 27
41893 6 27
42065 1 27
42237 11 27
42409 5 27
40000 5 27
40172 11 27
40344 1 27
40516 6 27
40688 2 27
40860 7 27
41549 13 27
41721 17 27
41893 18 27
42065 21 27
42237 22 27
42409 24 27
42000 24 27
42172 22 27
42344 21 27
42516 18 27
42688 17 27
42860 13 27
43549 7 27
43721 2 27
43893 6 27
44065 1 27
44237 11 27
44409 5 27
42000 5 27
42172 11 27
42344 1 27
42516 6 27
42688 2 27
42860 7 27
43549 13 27
43721 17 27
43893 18 27
44065 21 27
44237 22 27
44409 24 27
44000 24 27
44172 22 27
44344 21 27
44516 18 27
44688 17 27
44860 13 27
45549 7 27
45721 2 27
45893 6 27

 160

46065 1 27
46237 11 27
46409 5 27
44000 5 27
44172 11 27
44344 1 27
44516 6 27
44688 2 27
44860 7 27
45549 13 27
45721 17 27
45893 18 27
46065 21 27
46237 22 27
46409 24 27
48000 19 27
48172 23 27
48344 15 27
48516 20 27
48688 12 27
48860 16 27
49549 3 27
49721 8 27
49893 4 27
50065 9 27
50237 10 27
50409 14 27
48000 14 27
48172 10 27
48344 9 27
48516 4 27
48688 8 27
48860 3 27
49549 16 27
49721 12 27
49893 20 27
50065 15 27
50237 23 27
50409 19 27
50000 19 27
50172 23 27
50344 15 27
50516 20 27
50688 12 27
50860 16 27
51549 3 27
51721 8 27
51893 4 27
52065 9 27
52237 10 27
52409 14 27
50000 14 27
50172 10 27
50344 9 27
50516 4 27

 161

50688 8 27
50860 3 27
51549 16 27
51721 12 27
51893 20 27
52065 15 27
52237 23 27
52409 19 27
52000 19 27
52172 23 27
52344 15 27
52516 20 27
52688 12 27
52860 16 27
53549 3 27
53721 8 27
53893 4 27
54065 9 27
54237 10 27
54409 14 27
52000 14 27
52172 10 27
52344 9 27
52516 4 27
52688 8 27
52860 3 27
53549 16 27
53721 12 27
53893 20 27
54065 15 27
54237 23 27
54409 19 27
54000 19 27
54172 23 27
54344 15 27
54516 20 27
54688 12 27
54860 16 27
55549 3 27
55721 8 27
55893 4 27
56065 9 27
56237 10 27
56409 14 27
54000 14 27
54172 10 27
54344 9 27
54516 4 27
54688 8 27
54860 3 27
55549 16 27
55721 12 27
55893 20 27
56065 15 27
56237 23 27

 162

56409 19 27
56000 19 27
56172 23 27
56344 15 27
56516 20 27
56688 12 27
56860 16 27
57549 3 27
57721 8 27
57893 4 27
58065 9 27
58237 10 27
58409 14 27
56000 14 27
56172 10 27
56344 9 27
56516 4 27
56688 8 27
56860 3 27
57549 16 27
57721 12 27
57893 20 27
58065 15 27
58237 23 27
58409 19 27
60000 24 27
60172 22 27
60344 21 27
60516 18 27
60688 17 27
60860 13 27
61549 7 27
61721 2 27
61893 6 27
62065 1 27
62237 11 27
62409 5 27
60000 5 27
60172 11 27
60344 1 27
60516 6 27
60688 2 27
60860 7 27
61549 13 27
61721 17 27
61893 18 27
62065 21 27
62237 22 27
62409 24 27
62000 24 27
62172 22 27
62344 21 27
62516 18 27
62688 17 27
62860 13 27

 163

63549 7 27
63721 2 27
63893 6 27
64065 1 27
64237 11 27
64409 5 27
62000 5 27
62172 11 27
62344 1 27
62516 6 27
62688 2 27
62860 7 27
63549 13 27
63721 17 27
63893 18 27
64065 21 27
64237 22 27
64409 24 27
64000 24 27
64172 22 27
64344 21 27
64516 18 27
64688 17 27
64860 13 27
65549 7 27
65721 2 27
65893 6 27
66065 1 27
66237 11 27
66409 5 27
64000 5 27
64172 11 27
64344 1 27
64516 6 27
64688 2 27
64860 7 27
65549 13 27
65721 17 27
65893 18 27
66065 21 27
66237 22 27
66409 24 27
66000 24 27
66172 22 27
66344 21 27
66516 18 27
66688 17 27
66860 13 27
67549 7 27
67721 2 27
67893 6 27
68065 1 27
68237 11 27
68409 5 27
66000 5 27

 164

66172 11 27
66344 1 27
66516 6 27
66688 2 27
66860 7 27
67549 13 27
67721 17 27
67893 18 27
68065 21 27
68237 22 27
68409 24 27
68000 24 27
68172 22 27
68344 21 27
68516 18 27
68688 17 27
68860 13 27
69549 7 27
69721 2 27
69893 6 27
70065 1 27
70237 11 27
70409 5 27
68000 5 27
68172 11 27
68344 1 27
68516 6 27
68688 2 27
68860 7 27
69549 13 27
69721 17 27
69893 18 27
70065 21 27
70237 22 27
70409 24 27
72000 19 27
72172 23 27
72344 15 27
72516 20 27
72688 12 27
72860 16 27
73549 3 27
73721 8 27
73893 4 27
74065 9 27
74237 10 27
74409 14 27
72000 14 27
72172 10 27
72344 9 27
72516 4 27
72688 8 27
72860 3 27
73549 16 27
73721 12 27

 165

73893 20 27
74065 15 27
74237 23 27
74409 19 27
74000 19 27
74172 23 27
74344 15 27
74516 20 27
74688 12 27
74860 16 27
75549 3 27
75721 8 27
75893 4 27
76065 9 27
76237 10 27
76409 14 27
74000 14 27
74172 10 27
74344 9 27
74516 4 27
74688 8 27
74860 3 27
75549 16 27
75721 12 27
75893 20 27
76065 15 27
76237 23 27
76409 19 27
76000 19 27
76172 23 27
76344 15 27
76516 20 27
76688 12 27
76860 16 27
77549 3 27
77721 8 27
77893 4 27
78065 9 27
78237 10 27
78409 14 27
76000 14 27
76172 10 27
76344 9 27
76516 4 27
76688 8 27
76860 3 27
77549 16 27
77721 12 27
77893 20 27
78065 15 27
78237 23 27
78409 19 27
78000 19 27
78172 23 27
78344 15 27

 166

78516 20 27
78688 12 27
78860 16 27
79549 3 27
79721 8 27
79893 4 27
80065 9 27
80237 10 27
80409 14 27
78000 14 27
78172 10 27
78344 9 27
78516 4 27
78688 8 27
78860 3 27
79549 16 27
79721 12 27
79893 20 27
80065 15 27
80237 23 27
80409 19 27
80000 19 27
80172 23 27
80344 15 27
80516 20 27
80688 12 27
80860 16 27
81549 3 27
81721 8 27
81893 4 27
82065 9 27
82237 10 27
82409 14 27
80000 14 27
80172 10 27
80344 9 27
80516 4 27
80688 8 27
80860 3 27
81549 16 27
81721 12 27
81893 20 27
82065 15 27
82237 23 27
82409 19 27
84000 24 27
84172 22 27
84344 21 27
84516 18 27
84688 17 27
84860 13 27
85549 7 27
85721 2 27
85893 6 27
86065 1 27

 167

86237 11 27
86409 5 27
84000 5 27
84172 11 27
84344 1 27
84516 6 27
84688 2 27
84860 7 27
85549 13 27
85721 17 27
85893 18 27
86065 21 27
86237 22 27
86409 24 27
86000 24 27
86172 22 27
86344 21 27
86516 18 27
86688 17 27
86860 13 27
87549 7 27
87721 2 27
87893 6 27
88065 1 27
88237 11 27
88409 5 27
86000 5 27
86172 11 27
86344 1 27
86516 6 27
86688 2 27
86860 7 27
87549 13 27
87721 17 27
87893 18 27
88065 21 27
88237 22 27
88409 24 27
88000 24 27
88172 22 27
88344 21 27
88516 18 27
88688 17 27
88860 13 27
89549 7 27
89721 2 27
89893 6 27
90065 1 27
90237 11 27
90409 5 27
88000 5 27
88172 11 27
88344 1 27
88516 6 27
88688 2 27

 168

88860 7 27
89549 13 27
89721 17 27
89893 18 27
90065 21 27
90237 22 27
90409 24 27
90000 24 27
90172 22 27
90344 21 27
90516 18 27
90688 17 27
90860 13 27
91549 7 27
91721 2 27
91893 6 27
92065 1 27
92237 11 27
92409 5 27
90000 5 27
90172 11 27
90344 1 27
90516 6 27
90688 2 27
90860 7 27
91549 13 27
91721 17 27
91893 18 27
92065 21 27
92237 22 27
92409 24 27
92000 24 27
92172 22 27
92344 21 27
92516 18 27
92688 17 27
92860 13 27
93549 7 27
93721 2 27
93893 6 27
94065 1 27
94237 11 27
94409 5 27
92000 5 27
92172 11 27
92344 1 27
92516 6 27
92688 2 27
92860 7 27
93549 13 27
93721 17 27
93893 18 27
94065 21 27
94237 22 27
94409 24 27

 169

50000 5 27
57194 1 27
64388 2 27
82374 13 27
89568 18 27
96763 22 27
50000 24 27
57194 21 27
64388 17 27
82374 7 27
89568 6 27
96763 11 27
30000 19 27
37194 15 27
44388 12 27
62374 3 27
69568 4 27
76763 10 27
30000 14 27
37194 9 27
44388 8 27
62374 16 27
69568 20 27
76763 23 27
];

end

%%%
% Create_PCAP_Table %
%%%

function Create_PCAP_Table()
% Creates the table in which the PCAP information is stored for each
% transmission.

global PCAP;
% Packet# Timer Status SrcNode DestNode RawPacket
PCAP = zeros(1,1021);

end

%%%
% Spoof %
%%%

function Spoof()
% Inserting packet for spoofing

 170

global Spoofed_Node;
global Rec_Node;
global Spoof_Pack_Num;
global Spoof_Packet;
global Energy_Table;
global Node_Status;
global Timer;
global Open_Packets;
global SpNum;
global Packet;
global fileID;
global Packets;
global Node_Status_Table;
global Timer_Spoof;
global Wait_Time;

[cc,dd] = size(Node_Status_Table);
cc = cc+1;

[b,c] = size(Energy_Table);
 d = 0;
for n= 1:b
% We know the node needs to transmit but needs to see if another node
% is transmitting
if Energy_Table(n,1) == Rec_Node
if Node_Status(Energy_Table(n,2),2) == 3;
 d = 1;
end
end
end
% checks ot see if it is able to spoof the node from the checks
% performed above
if d == 0 && Spoof_Pack_Num > 0 && Timer_Spoof < Timer
 Timer_Spoof = Timer + 1000; % another spoof can occur in 1000ms
 Wait_Time(Rec_Node,2) = 0;

 Spoof_Pack_Num = Spoof_Pack_Num - 1; %can place a limit on the
number of spoofed frames by the user
 [q,r] = size(Open_Packets);
 q = q+1;
 SpNum = q;
 Open_Packets(q,1:7) = [q (Timer+4) 2 1 Spoofed_Node Rec_Node
0]; %log for the open frames
 Node_Status(Rec_Node,2:3) = [5 (Timer+4)]; % continuous node
status log
 Node_Status_Table(cc,1:4) = [Rec_Node,Timer,2,5]; % current
node status log
 Packet(q,1:1016) = Spoof_Packet(1:1016); %creates spoofed frame
 Packets(q,1:3) = [q Spoofed_Node Rec_Node]; %frame is logged
 fprintf('---At Time %i, Packet %i is a spoofed
packet\n',Timer,q);
 fprintf(fileID,'---At Time %i, Packet %i is a spoofed
packet\n',Timer,q);

 171

end

end

%%%
% Spoofing %
%%%

function Spoofing()
% Spoofing attack

global Spoofed_Node;
global Rec_Node;
global Routing_Table;
global Spoof_Pack_Num;
global Spoof_Packet;
global Starter_Packet;
global Node_MAC;
global Node_Address;
global SpNum;
global Timer_Spoof;

Timer_Spoof = 0;
SpNum = 0;
Rec_Node = 0;

Spoof_Pack_Num = 100; %limits simulation to 100 injected frames
% not testing a spoofed frame from BS
if Spoofed_Node < 27
 [a,b] = size(Routing_Table);
for n = 1:a %find the next hop to go to from the spoofed node
if Spoofed_Node == Routing_Table(n,1) && Routing_Table(n,2) == 1
 Rec_Node = Routing_Table(n,3);
end
end
% create spoofed frame
 Spoof_Packet = Starter_Packet(1,1:1016);

% Adds Source MAC Address
 Spoof_Packet(17:80) = Node_MAC(Spoofed_Node,2:65);

%Destination MAC Address
 Spoof_Packet(81:144) = Node_MAC(Rec_Node,2:65);

% Source Address
 Spoof_Packet(169:184) = Node_Address(Spoofed_Node,50:65);

% Destination Address
 Spoof_Packet(185:200) = Node_Address(27,50:65);

%Sequence Number

 172

 Spoof_Packet(225:256) = randi([0,1],1,32);

% Padding
 Spoof_Packet(425:864) = randi([0 1],1,440);

% Next Header
 Spoof_Packet(993:1000) = randi([0 1],1,8);

% Payload
 Spoof_Packet(297:424) = randi([0,1],1,128);

% Message Integrity Code
 Spoof_Packet(865:992) = randi([0 1],1,128);

% Field Check Sum (CRC)
%Create the CRC for the Packet
 crc1 = Spoof_Packet(1:1000);
 crc = crc16(crc1);
 Spoof_Packet(1001:1016) = crc;
end

end

%%%
% DDOS %
%%%

function DDOS(n)
% Directed Denial of Service Attack

global DDOS_Node;
global Node_Status;
global Energy_Table;
global Cycles;
global Enc;

% creates node within table to simulate the rogue node to conduct DOS
% attack, initial set-up
if n == 1
 [a,b] = size(Energy_Table);
 Energy_Table((a+1),1:2) = [28,DDOS_Node];
 Enc(DDOS_Node) = 0;

%ensures node remains in transmitting status each cycle and that the
%affected node remains in a receiving status
elseif n == 2
 Node_Status(DDOS_Node,2:3) = [5 Cycles];
 Node_Status(28,1:5) = [28 3 Cycles 0 0];

end

 173

end

%%%
% MITM %
%%%

function MITM(PN)
% Man in the Middle attack

global Packet;
global fileID;
global MITMAtt;

%Alerts user the attack was performed
fprintf('---A MITM attack was executed for packet %3i\n',PN);
fprintf(fileID,'---A MITM attack was executed for packet %3i\n',PN);
%injects random information into the payload
Packet(PN,297:864) = randi([0,1],1,568);
crc = crc16(Packet(PN,1:1000));
%adjusts the crc to properly validate at follow-on node
Packet(PN,1001:1016) = crc(1:16);

[aa,bb] = size(MITMAtt);
cc = 0;
%Logs the frames in which the MITM was conducted on to analyze
afterwards
for n = 1:bb
if MITMAtt(n) == PN
 cc = 1;
end
end
if cc == 0
 MITMAtt(n + 1) = PN;
end

end

%%%
% Run Simulation %
%%%
function Run_Simulation()
% This function iterates every 1 ms to simulate a network environment.

global Timer;
global Events;
global DDOS_Node;
global Cycles;
global fileID;

 174

global Spoofed_Node;
global Rec_Node;
global Node_Status;

%Gets last time a sensing event is obtained
LastEvent = max(Events);

%Adds time for the sesning event to be completed
Cycles = LastEvent(1) + 10000; %adds 10 seconds

for n = 1:Cycles
%Checks for errors from preious cycle and distributes the errors as
%required
 Check_For_Errors(Timer);

%Adjusts the Node's status once it has reached the end of its process
 Check_Node_Status(Timer);

 a = randi(100,1);
if Spoofed_Node < 27
if a <= 1 && Node_Status(Rec_Node,2) == 2 &&
Node_Status(Spoofed_Node,2) == 0
 Spoof();
end
end

%Cycles through open packets to see if it is ready for the cycle
 Check_For_Open_Packets(Timer);

%Checks for new sensing events to be added to an open packet
 Check_For_New_Events(Timer);

%Adds the time to the specific energy use tables
xxx = mod(Timer,5000);

%alerts user the program is running and how far along it is
xxxx = Timer /1000;
if xxx == 0
 fprintf('%i seconds have elapsed \n',xxxx);
 fprintf(fileID,'%i seconds have elapsed \n',xxxx);
end

% checks status of DOS rogue and affected node
if DDOS_Node < 28
 DDOS(2);
end

%Logs energy use of the nodes at the time in the cycle
 Check_For_Energy_Use();
 Timer = Timer + 1;
 LastEvent = max(Events);

%ensures last event is complete before ending the program

 175

 Cycles = LastEvent(1) + 5000;
end

end

%%%
% Check_For_Errors %
%%%

function Check_For_Errors(Timer)
% Checks all of the Open_Packets to show that there was an error in
% receiving a packet. It is documented that the packet was received in
% error but the node will continue its same processing sequence, it
% will just fail in processing and the transmitting node will have to
% transmit again.

%{
This is for me while programming to keep from checking another file....
Packet # timer event # of trans TransNode RecNode Errors
Open_Packets = [
 0 0 0 0 0 0 0
];
%}

global Open_Packets;
global Energy_Table;

[a,b] = size(Open_Packets); %gets the number of the amount of open
packets
for n = 1:a % cycles through all of the open packets
 c = 0; % variable
if Open_Packets(n,3) == 2 % Checks if a packet is being transmitted
for m = 1:a % If a packet is being transmitted it is then checked
against all other open packets
if Open_Packets(m,3) == 2 && Open_Packets(n,5) ~= Open_Packets(m,5) %
If will cycle itself again to see if another node is transmitting
% If another node is transmitting then it needs to check if
% the receiving node is affected by cycling through all of
% the potentialling affected nodes.
 [d,e] = size(Energy_Table); % Gets the size of the table
for p = 1:d % Cycles through the table
if Open_Packets(m,5) == Energy_Table(p,1)

% Finds in the table the affected nodes
if Energy_Table(p,2) == Open_Packets(n,6)

% If a receiving node matches an affected node
 diff=(Open_Packets(m,2) - Open_Packets(n,2));
 check = power(diff,2);
if check < 17
 Open_Packets(n,3) = 3;

% the error is placed in the original packet
end
end

 176

end
if Open_Packets(n,5) == Energy_Table(p,1)

% Finds in the table the affected nodes
if Energy_Table(p,2) == Open_Packets(m,6)

% If a receiving node matches an affected node
 diff=(Open_Packets(m,2) - Open_Packets(n,2));
 check = power(diff,2);
if check < 17
 Open_Packets(m,3) = 3;

% the error is placed in the original packet
end
end
end
end
end
end
end
end

%%%
% Check_Node_Status %
%%%

function Check_Node_Status(Timer)
%Adjusts the node status to the next step when the node timer is
reached

global Node_Status;
global Wait_Time;
global Open_Packets;
global Node_Status_Table;

for n=1:27 %Cycle through all of the nodes
if Wait_Time(n,2) == 25;

% If wait time reaches 25 ms then it will go to sleep
 Wait_Time(n,2) = 0;

% Resets wait time for next evolution
 Node_Status(n,2) = 6; % Status 6 is going to sleep
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [n Timer 2 6];
 Node_Status(n,3) = Timer + 1;

% It takes 1 ms to go to sleep

end

% if the node is at 2 and still waiting, add 1 ms to energy use
if Node_Status(n,2) == 2 && Node_Status(n,1) ~= 27

 Wait_Time(n,2) = Wait_Time(n,2) + 1;

% Adds 1 ms to the Wait time
elseif Node_Status(n,3) <= Timer % Checks if the node is
ready to transition to the next stage

 177

% If node is either at:
% 0 = Node is asleep
% 1 = finished waking up
% 3 = finished transmitting
% 4 = finished Processing
% 5 = Finished receiving
% 6 = Going to sleep
% 7 = Waiting for Post Trans
if Node_Status(n,2) == 1
 Node_Status(n,2) = 2;

% change node to a waiting status making it available for
% the next function

 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [n Timer 1 2];

% entry into node status log
elseif Node_Status(n,2) == 7
 Node_Status(n,2) = 2;

% it is now in waiting phase to begin retransmission
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [n Timer 7 2];

% entry into node status log
 Wait_Time(n,2) = 0;
elseif Node_Status(n,2) == 4
 Node_Status(n,2) = 2;

% it is now in waiting phase to begin retransmission
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [n Timer 4 2];

% entry into node status log
 Wait_Time(n,2) = 0;
elseif Node_Status(n,2) == 5

% node is finished receiving
 Node_Status(n,2) = 4;

% node is now processing
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [n Timer 5 4];

% entry into node status log
 Wait_Time(n,2) = 0;
elseif Node_Status(n,2) == 3

% if node is finished transmitting
 Node_Status(n,2) = 7;

% it is now in a processing phase
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [n Timer 3 7];

% entry into node status log
 Wait_Time(n,2) = 0;
 [c,d] = size(Open_Packets);
for aa = 1:c
if Open_Packets(aa,5) == Node_Status(n,1)
if Open_Packets(aa,4)==1 || Open_Packets(aa,4)==5
 Node_Status(n,3) = Timer + 6;

% Time after first transmission
% seed number inserted for BS neighbor
% nodes
if Node_Status(n,1) == 25 || Node_Status(n,1) == 26

 178

 Node_Status(n,3) =
Node_Status(n,3) + randi([1,4],1,1);
end

elseif Open_Packets(aa,4) == 2 || Open_Packets(aa,4) == 6
 Node_Status(n,3) = Timer + 10; % Time
after second transmission
if Node_Status(n,1) == 25 || Node_Status(n,1) == 26
 Node_Status(n,3) =
Node_Status(n,3) + randi([1,4],1,1); %seed number
end

elseif Open_Packets(aa,4) == 3 || Open_Packets(aa,4) == 7
 Node_Status(n,3) = Timer + 20; % Time
after third transmission
if Node_Status(n,1) == 25 || Node_Status(n,1) == 26
 Node_Status(n,3) =
Node_Status(n,3) + randi([1,4],1,1);%seed number
end
elseif Open_Packets(aa,4) == 4 || Open_Packets(aa,4) == 8
 Node_Status(n,3) = Timer + 40; % Time
after fourth transmission
if Node_Status(n,1) == 25 || Node_Status(n,1) == 26
 Node_Status(n,3) =
Node_Status(n,3) + randi([1,4],1,1);%seed number
end
end
end
end

end
if Node_Status(n,2) == 6

%if node has completed its going to sleep phase
 Node_Status(n,2) = 0; % Node is now in sleep
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [n Timer 6 0];

% entry into node status log
end
end

end

end

%%%
% Check_For_Open_Packets %
%%%

function Check_For_Open_Packets(Timer)

% Check to see if a packet is ready to move onto the next function
%Packet # timer event # of trans TransNode RecNode Errors
%Open_Packets = [
% 0 0 0 0 0 0 0

 179

%];

% Node# Status Stat Time chg Errors?
%Node_Status = [
% 1 0 0 0;

global Open_Packets;
global Node_Status;
global Node_Status_Table;

[a,b] = size(Open_Packets); %gets the number of the amount of open
packets
for n = 1:a % cycles through all of the open packets

if Open_Packets(n,2) <= Timer && Open_Packets(n,7) <= 50
% Checks if a packet is ready for next function

%Packet is ready to transition from Wakeup
if Open_Packets(n,3) == 0 && Open_Packets(n,1) > 0
% Packet is made but has not been processed

% if packet was in the wake up stage, it needs to move to processing
% the packet
%In order to move to processing the packet, the node must be waiting,
%therefore must check if node is in phase 2, waiting.

%Node is ready for the open packet to process
if Node_Status(Open_Packets(n,5), 2) == 2 &&
Node_Status(Open_Packets(n,5), 3) <= Timer
 Node_Status(Open_Packets(n,5), 2) = 4;
% Node is now processing original packet
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) =
[Open_Packets(n,5) Timer 2 4];
 Node_Status(Open_Packets(n,5),3) = Timer + 8;
% Time to process for Node
 Open_Packets(n,2) = Timer + 8;
% Time to process the packet
 Open_Packets(n,3) = [2];
% Adjusts packet status that it is now in the processing phase

end

% Packet has finished processing and ready for transmission
elseif Open_Packets(n,3) == 1 && Open_Packets(n,2) <= Timer
% Node can only go to next function if it is in state 2,
% otherwise no need to check other functions
if Node_Status(Open_Packets(n,5), 2) == 4 &&
Node_Status(Open_Packets(n,5), 3) <= Timer

% Function to transmit the packet and determine if it
% can transmit, this will contain a lot of code to

 180

% determine the energy of the affected nodes and etc.

%Will need to place nodes in either receiving or
%transmitting phases and then all into a processing
%phase.
 Transmission(Open_Packets(n,1));

elseif Node_Status(Open_Packets(n,5), 2) == 2 &&
Node_Status(Open_Packets(n,5), 3) <= Timer
 Transmission(Open_Packets(n,1));
end

% Packet has completed transmission and is ready to be post
% processed by the Receiving Node
elseif Open_Packets(n,3) == 2 && Open_Packets(n,2) <= Timer
%Check Packet Status
 Open_Packets(n,3) = 3;
 Process_Received_Packet(Open_Packets(n,1));
% Sends to function to process the packet

% Packet has completed processing and needs to be
% transmitted
elseif Open_Packets(n,3) == 3 && Open_Packets(n,2) <= Timer
% Checks node status to see if it is ready to transmit
if Node_Status(Open_Packets(n,5),2) == 2 &&
Node_Status(Open_Packets(n,5), 3) <= Timer
 Transmission(Open_Packets(n,1));
end

end

end

end

%%%
% Process_Received_Packet %
%%%

function Process_Received_Packet(Packet_Number)
%Adjusts the node status to the next step when the node timer is
% reached

global Node_Status;
global Packet;
global Open_Packets;
global Timer;
global Node_Address;
global Node_MAC;
global Energy_Table;
global Node_Status_Table;

 181

global MITM_Nodes;
global fileID;
global MITMAtt;
global SpNum;
global Rec_Node;

PN = Packet_Number;
source = 0;
aaa = 0;

% Checks for Receiving nodes status to see if it able to begin
% processingand if its timer is good

if Node_Status(Open_Packets(PN,6), 2) == 4 &&
Node_Status(Open_Packets(PN,6), 3) <= Timer
% Check to see if there was an error for the packet or node
if Open_Packets(PN,7) <= 49 && Node_Status(Open_Packets(PN,6),4) <= 99
% No errors were found, receiving node is ready for processing
 Node_Status(Open_Packets(PN,6),3) = Timer + 5;
% Sets timer on the node
 Open_Packets(PN,2) = Timer + 5;
% Time to process the packet
 Open_Packets(PN,3) = 3;
% Sets status of the Packet to have been processed

if MITM_Nodes(1) == Open_Packets(PN,5) && MITM_Nodes(2) ==
Open_Packets(PN,6)
 MITMAtt(1) = 0;
 MITM(PN);
end
% % Add BER
 Test_Packet(1,1:1016) = Packet(PN,1:1016);
if SpNum == PN && Rec_Node == Open_Packets(PN,6)
% % Spoof skipped BER in order to properly inject the frame
else
for pp = 1:1016
 bb = Packet(PN,pp);
 cc = randi(100000,1);
%performs the random BER on the frame being received
if bb == 0 && cc <= 1
 fprintf('At time %i a BER was inserted for
Packet %i and bit # %i \n', Timer, PN, pp);
 fprintf(fileID,'At time %i a BER was
inserted for Packet %i and bit # %i \n', Timer, PN, pp);
 Test_Packet(pp) = 1;
elseif bb == 1 && cc <=1
 fprintf('At time %i a BER was inserted for
Packet %i and bit # %i \n', Timer, PN, pp);
 fprintf(fileID,'At time %i a BER was
inserted for Packet %i and bit # %i \n', Timer, PN, pp);
 Test_Packet(pp) = 0;
end
end
end
%Check addresses

 182

 destmac(1:64) = Packet(PN,81:144);
 dm = 0;
 srcmac(1:64) = Packet(PN,17:80);
 sm = 0;
 destip(1:16) = Packet(PN,185:200);
 di = 0;

% checks to make sure addresses transmitted correctly
for ad = 1:27
if srcmac(1:64) == Node_MAC(ad,2:65)
if Open_Packets(PN,5) == ad
 sm = 1;
end
end
if destmac(1:64) == Node_MAC(ad,2:65)
if Open_Packets(PN,6) == ad
 dm = 1;
end
end
end
if destip(1:16) == Node_Address(27,50:65)
 di = 1;
end

 tot = sm + dm + di;

% % Checks CRC
 crc = crc16(Test_Packet(1:1000));
if Packet(PN,1001:1016) == crc(1:16)
 aaa = 1;
else
 fprintf('At time %i CRC Failed for Packet %i \n',
Timer, PN);
 fprintf(fileID,'At time %i CRC Failed for Packet %i
\n', Timer, PN);
end

% Sends to function to change the packet headers for the
% next transmission if it is not at the Base Station

 source = Open_Packets(PN,5);

%if everything checks out with addresses and CRC
if Open_Packets(PN,6) ~= 27 && aaa == 1 && tot == 3
 Packet_Next_Hop(Open_Packets(PN,1));
 crc = crc16(Packet(PN,1:1000));
 Packet(PN,1001:1016) = crc;
 Open_Packets(PN,4) = 0;
%if received by the BS and an error has occured logs the
%error or logged as received
elseif Open_Packets(PN,6) == 27 && Open_Packets(PN,4) == 1
if aaa == 1 && tot == 3
 Open_Packets(PN,7) = 99; % received no error

 183

else
 Open_Packets(PN,7) = 96; % received with error
end
end
end

else

end% Node_Status(Open_Packets(n,6), 2) == 2 &&
Node_Status(Open_Packets(n,6), 3) <= Timer

%Now to consider the nodes that were affected

 [b,c] = size(Energy_Table);
%Cycles through the table again to set statuses
for n = 1:b

% Checks for sending node
if Energy_Table(n,1) == source;

 AN = Energy_Table(n,2); % Affected Node

% Node will now process the packet and discard since it is
% not to the node
if Node_Status(AN,2) == 4 && Open_Packets(PN,6) ~= AN

 Node_Status(AN,3) = Timer + 5;
% Adjusts time for nodes next function

% Node is waiting to receive packet from receiving node to confirm that
the packet was successfully forwarded
elseif Node_Status(AN,2) == 7
 Node_Status(AN,2) = 4;
%Switch Node Status to Receiving
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [AN Timer 7 4];
 Node_Status(AN,3) = Timer + 5;
% Adjusts time for node's next function

end% if Node_Status(Open_Packets(a,6),2) == 2

end% Energy_Table(n,1) == a
end% for n = 1:b

end

%%%

 184

% Transmission %
%%%

function Transmission(Packet_Number)
% Function to transmit the packet and determine if it
% can transmit, this will contain a lot of code to
% determine the energy of the affected nodes and etc.

%Will need to place nodes in either receiving or
%transmitting phases and then all into a processing
%phase.

global Open_Packets;
global Energy_Table;
global Node_Status;
global PCAP;
global Timer;
global Packet;
global Node_Status_Table;
global Routing_Table;
global Node_MAC;
global Node_Address;
global Events;
global Packet_Retrans_Tracker;
global NodeTX;
global NodeRX;

a = Packet_Number;
PN = a;
d = 0;
SMA = 0;
SIP = 0;

if Open_Packets(PN,4) == 4
[f,b] = size(Routing_Table);
% checks for which route it should use
 SMAC = Packet(PN,17:80);
 SIPC = Packet(PN,169:184);
for nn = 1:f
if Open_Packets(PN,5) == Routing_Table(nn,1) && 2 ==
Routing_Table(nn,2)
 Open_Packets(PN,6) = Routing_Table(nn,3);
 Packet(PN,81:144) = Node_MAC(Open_Packets(PN,6),2:65);
 nn = f;
end

end
for mm = 1:27
if SMAC(1:64) == Node_MAC(mm,2:65)
 SMA = mm;
end

if SIPC == Node_Address(mm,50:65)
 SIP = mm;

 185

end
end
if SIP == SMA
 Packet(PN,162) = [2];
else
 Packet(PN,161) = [2];
end

%Adjust new CRC
 crc = crc16(Packet(PN,1:1000));
 Packet(PN,1001:1016) = crc(1:16);

end

%Frame had a collision on the last hop
if Open_Packets(PN,4) >= 1 && Open_Packets(PN,6) == 27
 Open_Packets(PN,7) = 97;
 d = 1;
end

% frame has been transmitted 8 times and is going into storage for
% futuretransmission
if Open_Packets(PN,4) >= 8 && Open_Packets(PN,7) <= 49
 Open_Packets(PN,7) = 98;
 [j,k] = size(Events);
if j <= 3000
 tim = Timer + 1000 + randi(200,1);
 [aa,bb] = size(Packet_Retrans_Tracker);
 Packet_Retrans_Tracker((aa+1),1:4) = [PN, 00,
Open_Packets(PN,5), Timer];
 Events((j+1),1:3) = [tim Open_Packets(PN,5) 27];
end
 d = 1;
end

[b,c] = size(Energy_Table);

%variable used to determine if another node is transmitting, if it is
%transmitting d will equal 1, if any of the nodes are not transmitting
% then the transmission can occur.

for n= 1:b
% We know the node needs to transmit but needs to see if another
% node is transmitting
if Energy_Table(n,1) == Open_Packets(a,5)
if Node_Status(Energy_Table(n,2),2) == 3;
 d = 1;
if Open_Packets(a,5) == 25 || Open_Packets(a,5) == 26
 Open_Packets(a,2) = Timer + 10;
else
 Open_Packets(a,2) = Timer + 20;
end
end
end

 186

end

% If there isn't a surrounding node that is transmitting the node may
% begin to transmit.
if d == 0
%switch Transmitting node to transmitting status
 Node_Status(Open_Packets(a,5),2) = 3;
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [Open_Packets(a,5) Timer 2 3];
 [g,h] = size(PCAP);
 k = g + 1;
 PCAP(k, 1:1021) = [a Timer Open_Packets(a,5) Open_Packets(a,6)
Open_Packets(a,4) Packet(a,1:1016)];
 NodeTX(Open_Packets(a,5),2) = NodeTX(Open_Packets(a,5),2) + 1;

%Adjust timers for transmitting nodes
 Node_Status(Open_Packets(a,5),3) = Timer + 7;

 Open_Packets(a,4) = Open_Packets(a,4) + 1;
 Open_Packets(a,3) = 2; %Adjust packet status to transmitting
 Open_Packets(a,2) = Timer + 7; %Adjust packet time

%Cycles through the table again to set statuses
for n = 1:b

% Checks for sending node
if Energy_Table(n,1) == Open_Packets(a,5)
%Checks for affected nodes
if Energy_Table(n,2) == Open_Packets(a,6)

%When the receiving node is found, must check its status.
% If receiving node is ready to receive, the status is
% moved to receiving
if Node_Status(Open_Packets(a,6),2) == 2 ||
Node_Status(Open_Packets(a,6),2) == 7
% Receiving node is waiting and ready to receive
 NodeRX(Open_Packets(a,6),2) =
NodeRX(Open_Packets(a,6),2) + 1;
 Node_Status(Open_Packets(a,6),2) = 5;
% Switches Node Status to Receiving
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) =
[Open_Packets(a,6) Timer 2 5];
 Node_Status(Open_Packets(a,6),3) = Timer + 7;
% Adjusts time for nodes next function

%Wake up the node
elseif Node_Status(Open_Packets(a,6),2) == 0
 Node_Status(Open_Packets(a,6),2) = 1;

 187

%Node is now being woken up
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) =
[Open_Packets(a,6) Timer 0 1];
 Node_Status(Open_Packets(a,6),3) = Timer + 1;
% Time for node to wake up

%Node is going to sleep
elseif Node_Status(Open_Packets(a,6),2) == 6
 Node_Status(Open_Packets(a,6),2) = 1;
%Node is now being woken up
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) =
[Open_Packets(a,6) Timer 6 1];
 Node_Status(Open_Packets(a,6),3) = Timer + 1; %
Time for node to wake back up

end% if Node_Status(Open_Packets(a,6),2) == 2

end% Energy_Table(n,2) == Open_Packets(a,6)

if Energy_Table(n,2) ~= Open_Packets(a,6)
 AN = Energy_Table(n,2); % Affected Node

%When the receiving node is found, must check its status.
% If receiving node is ready to receive, the status is
% moved to receiving
if Node_Status(AN,2) == 2
 NodeRX(AN,2) = NodeRX(AN,2) + 1;
 Node_Status(AN,2) = 5;
%Switches Node Status to Receiving
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [AN Timer 2 5];
 Node_Status(AN,3) = Timer + 7;
% Adjusts time for nodes next function

%Wake up the node
elseif Node_Status(AN,2) == 0
 Node_Status(AN,2) = 1;
%Node is now being woken up
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [AN Timer 0 1];
 Node_Status(AN,3) = Timer + 1;
% Time for node to wake up

%Node is receving another packet
elseif Node_Status(AN,2) == 5

%Node is going to sleep

 188

elseif Node_Status(Open_Packets(a,6),2) == 6
 Node_Status(AN,2) = 1;
%Node is now being woken up
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [AN Timer 6 1];
 Node_Status(AN,3) = Timer + 1;
% Time for node to wake back up

% Node is waiting to receive packet from receiving node to confirm that
the packet was successfully forwarded
elseif Node_Status(AN,2) == 7
 Node_Status(AN,2) = 5;
%Switches Node Status to Receiving
 NodeRX(AN,2) = NodeRX(AN,2) + 1;
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [AN Timer 7 5];
 Node_Status(AN,3) = Timer + 7;
% Adjusts time for nodes next function

end% if Node_Status(Open_Packets(a,6),2) == 2

end% Energy_Table(n,2) ~= Open_Packets(a,6)

end% Energy_Table(n,1) == Open_Packets(n,5)
end% for n = 1:b

end% function

%%%
% Packet_Next_Hop %
%%%

function Packet_Next_Hop(Packet_Number)
% Takes the packet and adjusts the source and dest MAC addresses
% Adjusts the Next_Hop field

global Packet;
global Open_Packets;
global Routing_Table;
global Node_MAC;

PN = Packet_Number;

[a,b] = size(Routing_Table);
cat = 1;
ch = 0;
% checks for which route it should use
for n = 1:a
% checks for source in first col
% checks for primary route
% checks that the source is not the destination

 189

if Open_Packets(PN,6) == Routing_Table(n,1) && cat ==
Routing_Table(n,2) && ch == 0
%do not send to frame to node it previously received it from to
%prevent looping
if Open_Packets(PN,5) == Routing_Table(n,3) && ch == 0
 cat = 2;
else
%changes out source and destination addresses for the next hop
 Open_Packets(PN,5) = Open_Packets(PN,6);
 Open_Packets(PN,6) = Routing_Table(n,3);
 Packet(PN,17:80) = Node_MAC(Open_Packets(PN,5),2:65);
 Packet(PN,81:144) = Node_MAC(Open_Packets(PN,6),2:65);
 Hop_Limit = bi2de(Packet(PN,163:168));
 HLB = Hop_Limit - 1; %reduces hop limit field
 Packet(PN,163:168) = de2bi(HLB,6);
 ch = 1;
 n = a;
end
end
end

end

%%%
% Check_For_New_Events %
%%%

function Check_For_New_Events(Timer)
% This function will create the new packet and check the status of the
% nodeto determine if it is busy, asleep, or in a waiting phase in
% which it canproce4ss the packet

global Events;
global Open_Packets;
global Packet;
global Starter_Packet;
global Node_MAC;
global Node_Address;
global Node_Status;
global Routing_Table;
global Node_Status_Table;
global Original_Packet;
global Orig_Events;
global Packet_Retrans_Tracker;
global Payload;
global MAC;
global Packets;

% This section Creates the Packet
 [e,f] = size(Events);

 190

for n = 1:e
% Is the frame one of the original events or was it being stored to
% be retransmitted later?
if Timer == Events(n,1) && n <= Orig_Events % Orinial event

 [a,b] = size(Packet);
%gets the number of the amount of open packets
 [q,r] = size(Open_Packets);
 [ss,tt] = size(Packets);
 ss=ss+1;

 c = a + 1;
 q = q + 1;

%Creates new standard packet
 Packet(c,1:1016) = Starter_Packet(1,1:1016);

%Need to find next hop MAC Address
 Next_Hop(1:64) = ones(1,64);
 Source(1:64) = ones(1,64);
 [z,y] = size(Routing_Table);
 Next_Node = 0;
for p = 1:z
if Events(n,2) == Routing_Table(p,1) && Routing_Table(p,2) == 1
 Next_Hop = Node_MAC(Routing_Table(p,3),2:65);
 Next_Node = Routing_Table(p,3);
 Source = Node_MAC(Events(n,2),2:65);
end
end

% Adds Source MAC Address
 Open_Packets(q,5) = [Events(n,2)];

 Packet(c,17:80) = Source;

%Destination MAC Address
 Open_Packets(q,1:7) = [q Timer 0 0 Events(n,2) Next_Node
0];
 Packets((ss),1) = q;
 Packets((ss),2) = Events(n,2);
 Packets((ss),3) = Next_Node;

 Packet(c,81:144) = Next_Hop;

% Source Address
 Packet(c,169:184) = Node_Address(Events(n,2),50:65);

% Destination Address
 Packet(c,185:200) = Node_Address(27,50:65);

%Sequence Number
 Packet(c,225:256) = de2bi([Node_Status(Events(n,2),5)],32);

 191

 Node_Status(Events(n,2),5) = Node_Status(Events(n,2),5) +
1;

% Padding
 Packet(c,425:864) = randi([0 1],1,440);

% Next Header
 Packet(c,993:1000) = randi([0 1],1,8);

% Payload
 Encryption_Decryption(c,1);
 Packet(c,297:424) = Payload(c,1:128);

% Message Integrity Code
 Packet(c,865:992) = MAC(1:128);

% Field Check Sum (CRC)
%Create the CRC for the Packet
 crc1 = Packet(c,1:1000);
 crc = crc16(crc1);
 Packet(c,1001:1016) = crc;

% Create the original frame for comparrison
 [g,h] = size(Packet);
 Original_Packet(g,:) = Packet(c,:);

% Node is awake and ready to send frame once processed
if Node_Status(Events(n,2),2) == 2
 Open_Packets(q,7) = [2];
 Open_Packets(q,2) = Timer + 8;
 Node_Status(Events(n,2),2) = 4;
 Node_Status(Events(n,2),3) = Timer + 8;
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [Open_Packets(q,5)
Timer 2 4];

%node is asleep or going to sleep, needs to be woken up
elseif Node_Status(Events(n,2),2) == 0 || Node_Status(Events(n,2),2) ==
6
 Open_Packets(q,7) = [0];
 Open_Packets(q,2) = Timer + 1;
 Node_Status(Events(n,2),2) = 1;
 Node_Status(Events(n,2),3) = Timer + 1;
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) = [Open_Packets(q,5)
Timer 0 1];
end

% Frame was stored and now being retransmitted
elseif Timer == Events(n,1) && n > Orig_Events
% log to track retransmitted frames
 [dd,ee] = size(Packet_Retrans_Tracker);

 192

% transfers the information from the original frame to the
% new retransmitted frame
for ff = 1:dd
if Packet_Retrans_Tracker(ff,3) == Events(n,2) &&
Packet_Retrans_Tracker(ff,2) == 0
 [q,r] = size(Open_Packets);
 q = q + 1;
 Packet_Retrans_Tracker(ff,2) = q;
 [a,b] = size(Packet);
%gets the number of the amount of open packets
 c = a + 1;
 [ss,tt] = size(Packets);
 ss=ss+1;
%Creates new standard packet
 Packet(c,1:1016) = Starter_Packet(1,1:1016);
%Need to find next hop MAC Address
 Next_Hop(1:64) = ones(1,64);
 Source(1:64) = ones(1,64);
 [z,y] = size(Routing_Table);
 Next_Node = 0;
for p = 1:z
if Events(n,2) == Routing_Table(p,1) && Routing_Table(p,2) == 1
 Next_Hop =
Node_MAC(Routing_Table(p,3),2:65);
 Next_Node = Routing_Table(p,3);
 Source = Node_MAC(Events(n,2),2:65);
end
end

 Open_Packets(q,5) = [Events(n,2)];

 Packet(c,17:80) = Source;

%Destination MAC Address
 Open_Packets(q,1:7) = [q Timer 0 0 Events(n,2)
Next_Node 0];
 Packets((ss),1) = q;
 Packets((ss),2) = Events(n,2);
 Packets((ss),3) = Next_Node;

 Packet(c,81:144) = Next_Hop;

% Hop limit and path indication bits
 Packet(c,161:168) =
Packet(Packet_Retrans_Tracker(ff,1),161:168);

% Source Address
 Packet(c,169:184) =
Packet(Packet_Retrans_Tracker(ff,1),169:184);

% Destination Address

 193

 Packet(c,185:200) =
Packet(Packet_Retrans_Tracker(ff,1),185:200);

%Sequence Number
 Packet(c,225:256) =
Packet(Packet_Retrans_Tracker(ff,1),225:256);

% Payload
%Packet(c,297:424) = ones(1,128);
 Packet(c,297:424) =
Packet(Packet_Retrans_Tracker(ff,1),297:424);

% Padding
 Packet(c,425:864) =
Packet(Packet_Retrans_Tracker(ff,1),425:864);
% Packet(c,425:864) = zeros(1,440);

% Message Integrity Code
 Packet(c,865:992) =
Packet(Packet_Retrans_Tracker(ff,1),865:992);
% Packet(c,865:992) = ones(1,128);

% Next Header
 Packet(c,993:1000) =
Packet(Packet_Retrans_Tracker(ff,1),993:1000);

% Field Check Sum (CRC)
%Create the CRC for the Packet
 crc1 = Packet(c,1:1000);
 crc = crc16(crc1);
 Packet(c,1001:1016) = crc;

% store as an original packet for comparison
 [g,h] = size(Packet);
 Original_Packet(g,:) = Packet(c,:);

% node is awake and ready to transmit
if Node_Status(Events(n,2),2) == 2
 Open_Packets(q,7) = [2];
 Open_Packets(q,2) = Timer + 8;
 Node_Status(Events(n,2),2) = 4;
 Node_Status(Events(n,2),3) = Timer + 8;
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) =
[Open_Packets(q,5) Timer 2 4];

%node is either asleep or going to sleep,
%needs to be woken up
elseif Node_Status(Events(n,2),2) == 0 || Node_Status(Events(n,2),2) ==
6
 Open_Packets(q,7) = [0];
 Open_Packets(q,2) = Timer + 1;

 194

 Node_Status(Events(n,2),2) = 1;
 Node_Status(Events(n,2),3) = Timer + 1;
 [A,B] = size(Node_Status_Table);
 Node_Status_Table((A+1),1:4) =
[Open_Packets(q,5) Timer 0 1];
end
end
end
end
end
end

%%%
% Check_For_Energy_Use %
%%%

function Check_For_Energy_Use()
%At the end of the evolution the time is added for each node depending
on
%what stage it is in at that time

global Node_Status;
global Energy_Use;

for n=1:27 %Cycle through all of the nodes

if Node_Status(n,2) == 0 % Node Asleep
 Energy_Use(n,9) = Energy_Use(n,9) + 1;
% Document the node is asleep
elseif Node_Status(n,2) == 1 % Node Waking Up
 Energy_Use(n,2) = Energy_Use(n,2) + 1;
% Document the node is waking up
elseif Node_Status(n,2) == 2 % Node Waiting
 Energy_Use(n,6) = Energy_Use(n,6) + 1;
% Document the node is Waiting
elseif Node_Status(n,2) == 3 % Node Transmitting
 Energy_Use(n,4) = Energy_Use(n,4) + 1;
% Document the node is transmitting
elseif Node_Status(n,2) == 4 % Node Processing
 Energy_Use(n,3) = Energy_Use(n,3) + 1;
% Document the node is processing
elseif Node_Status(n,2) == 5 % Node Receiving
 Energy_Use(n,5) = Energy_Use(n,5) + 1;
% Document the node is receiving
elseif Node_Status(n,2) == 6 % Node Going to sleep
 Energy_Use(n,7) = Energy_Use(n,7) + 1;
% Document the node is going to sleep
elseif Node_Status(n,2) == 7 % Node Waiting Post Transmission
 Energy_Use(n,8) = Energy_Use(n,8) + 1;
% Document the node is Waiting post trans
end

 195

end

end

%%%
% Display %
%%%

function Display()
% This is what initiates the events. Events are put in to create the
% sensing events that are simulated within the program.

global Events;
global Packet;
global Open_Packets;
global Timer;
global Energy_Use;
global Orig_Events;
global Initial_Payload;
global MAC_Check;
global Payload_Out;
global MAC_F;
global Routing_Table;
global fileID;
global MITMAtt;
global NodeTX;
global NodeRX;
global Packets;
global Spoofed_Node;
global Packet_Retrans_Tracker;
global Enc;
global Node_Address;

c = 0;
g = 0;
[e,f] = size(Open_Packets);
h = e-1;
j = h-Orig_Events;
z = 0;
x = 0;
for n = 2:e
if Open_Packets(n,7) == 99 %frame properly received
 c = c + 1;
elseif Open_Packets(n,7) == 98
% Transmitted 8 times unsuccessfully, placed in storage at node
 g = g + 1;
elseif Open_Packets(n,7) == 97
% Failed to be received by the BS correctly (collision)
 z = z + 1;
elseif Open_Packets(n,7) == 96
% CRC or BER on final hop to BS

 196

 x = x + 1;

end
end
d = c/h*100;
 fprintf('\nA total of %i packets were sent and %i packets were
received for a success rate of %3.2f%%. \n\n',h,c,d);
 fprintf(fileID,'\nA total of %i packets were sent and %i packets
were received for a success rate of %3.2f%%. \n\n',h,c,d);

 fprintf('A total of %i packets were dropped within the final hop
(was not fully received by BS). \n\n',z);
 fprintf(fileID,'A total of %i packets were dropped within the final
hop (was not fully received by BS). \n\n',z);

 fprintf('A total of %i packets were dropped due to CRC or BER to
header information within the final hop. \n\n',x);
 fprintf(fileID,'A total of %i packets were dropped due to CRC or
BER to header information within the final hop.\n\n',x);

[aaa,bbb] = size(Packet_Retrans_Tracker);
if aaa > 1
 ccc = aaa - 1;
 fprintf('%i packets were stored and retransmitted at a later time.
\n\n',ccc);
 fprintf(fileID,'%i packets were stored and retransmitted at a later
time. \n\n',ccc);
end

%variables to analyze the path indication bits
[a,b] = size(Packet);
orig = 0;
second = 0;
orignode = 0;
secnode = 0;
or = 1;
se = 1;

for n = 1:a
if Open_Packets(n,7) == 99
% checks for secondary route along follow-on nodes
if Packet(n,161) == 1
for nn = 1:26
if Node_Address(nn,50:65) == Packet(n,169:184)
 second = 1 + second;
 secnode(se) = nn;
 se = se + 1;
end
end
end
% checks for secondary route at originating nodes
if Packet(n,162) == 1
for nn = 1:26

 197

if Node_Address(nn,50:65) == Packet(n,169:184)
 orig = orig + 1;
 orignode(or) = nn;
 or = or + 1;
end
end
end
end
end

% add to table for secondary routes used
for n = 1:27
 Sec_Route_Table(n,1:3) = [n 0 0];
end

[aa,bb] = size(orignode);

[cc,dd] = size(Routing_Table);

% Calculates the table to show which nodes utilized the secondary
% routesfrom the original node
if orignode > 0
for n = 1:bb
 Sec_Route_Table(orignode(n),2) = Sec_Route_Table(orignode(n),2)
+ 1;
end
end
%Calculates the table to show which nodes utilized the secondary routes
% from the original nodes along the follow-on hops
[aa,bb] = size(secnode);
next_node = 0;
if secnode > 0
for n = 1:bb
 Sec_Route_Table(secnode(n),3) = Sec_Route_Table(secnode(n),3) +
1;
end
end

 fprintf('Table: The number of packets each node sent that took a
secondary route to the Base Station.\n');
 fprintf(fileID,'Table: The number of packets each node sent that
took a secondary route to the Base Station.\n');
 fprintf('Node \t Unsuccessful First Hop \t Unsuccessful Follow-On
Hops \n');
 fprintf(fileID,'Node \t Unsuccessful First Hop \t Unsuccessful
Follow-On Hops \n');
for n = 1:26
 fprintf(' %2i \t\t %3i \t\t\t\t %3i\n', Sec_Route_Table(n,1),
Sec_Route_Table(n,2), Sec_Route_Table(n,3));
 fprintf(fileID,' %2i \t\t %3i \t\t\t\t %3i\n',
Sec_Route_Table(n,1), Sec_Route_Table(n,2), Sec_Route_Table(n,3));
end
 fprintf('\n');
 fprintf(fileID,'\n');

 198

aaa = 0;
bbb = 0;

% Calculates the number of authenticated frames received by the MS
Packet_Auth = 0;
pa = 1;
for ch = 2:e
if Open_Packets(ch,7) == 99
 bbb = bbb + 1;
 Encryption_Decryption(ch,2);
if MAC_F(ch,1:128) == MAC_Check(ch,1:128)
if Payload_Out(ch,1:128) == Initial_Payload
 aaa = aaa + 1;
else
 fprintf('\nPacket %i Failed Payload\n ',ch);
 fprintf(fileID,'\nPacket %i Failed Payload\n ',ch);
end
else
 Packet_Auth(pa) = Open_Packets(ch,1);
 pa = pa + 1;
end
end
end
fprintf('Out of the %i packets received, %i packets matched the
original packet sent for a %3.2f%% success rate.
\n\n',bbb,aaa,(aaa/bbb*100));
fprintf(fileID,'Out of the %i packets received, %i packets matched the
original packet sent for a %3.2f%% success rate.
\n\n',bbb,aaa,(aaa/bbb*100));
[aa,bb] = size(Packet_Auth);
[dd,ee] = size(MITMAtt);
ee = ee - 1;
% Calculates the number of spoofed frames injected into the WSN
if ee > 0 || Spoofed_Node < 27
 fprintf('A MITM or Spoofing attack was conducted and %3i packets
were not Authenticated.\n\n',bb);
 fprintf(fileID,'A MITM or Spoofing attack was conducted and %3i
packets were not Authenticated.\n\n',bb);
 fprintf('The following packets failed Authentication\n');
 fprintf(fileID,'The following packets failed Authentication\n');

 cc = 1;
for n = 1:bb
 fprintf('%5i \t',Packet_Auth(n));
 fprintf(fileID,'%5i \t',Packet_Auth(n));
if cc == 10
 fprintf('\n');
 fprintf(fileID,'\n');
 cc = 0;
end
 cc = cc + 1;
end
 fprintf('\n\n');
 fprintf(fileID,'\n\n');

 199

%creates table giving the number of unauthenticated frames from each
%originating node
 Node_Auth = zeros(1,26);
 fprintf('The following nodes had packets that did not
Authenticate\n');
 fprintf(fileID,'The following nodes had packets that did not
Authenticate\n');
 fprintf('Node \t\t # Not Authenticated\n');
 fprintf(fileID,'Node \t\t # Not Authenticated\n');
for n = 1:bb
 num = Packet_Auth(n);
 Node_Auth(Packets(num,2)) = Node_Auth(Packets(num,2)) + 1;
end
for n = 1:26
 fprintf('%i \t\t %i \n',n,Node_Auth(n));
 fprintf(fileID,'%i \t\t %i \n',n,Node_Auth(n));
end
 fprintf('\n\n');
 fprintf(fileID,'\n\n');
end

fprintf('This simulation ran for a total of %i milliseconds or %5.2f
seconds.\n',Timer, (Timer/1000));
fprintf(fileID,'This simulation ran for a total of %i milliseconds or
%5.2f seconds.\n',Timer, (Timer/1000));
fprintf('Time each node spent in each phase in milliseconds \n Node\t
WU\t Proc\t CSMA\t Tran\t Rec\t\t RX-TX\t Wait\t GTSlp\t PTran\t
Slp\n');
fprintf(fileID,'Time each node spent in each phase in milliseconds \n
Node\t WU\t Proc\t CSMA\t Tran\t\t Rec\t RX-TX\t Wait\t GTSlp\t
PTran\t Slp\n');
total = zeros(1,26);
totalms = zeros(1,26);
%Creates table to display the energy use by each node
for n = 1:26
 node = n;
 wake = Energy_Use(n,2);
 proc = Energy_Use(n,3) - (Enc(n) * 4);
 trans = Energy_Use(n,4)-(NodeTX(n,2)*3);
 rec = Energy_Use(n,5) - NodeRX(n,2)*3;
 wait = Energy_Use(n,6) + NodeRX(n,2)*3;
 gtslp = Energy_Use(n,7);
 ptran = Energy_Use(n,8);
 slp =Energy_Use(n,9);
 csma = NodeTX(n,2)*2;
 rxtx = NodeTX(n,2);
 total(n) = wake * 20 + proc * 24 + csma*72 + rxtx*54 + trans * 90 +
rec * 72+ gtslp * 20 + wait * 72 + ptran * 72 + Enc(n) * 7.47 * 4 /
100;
 totalms(n) = total(n)/Timer;
 fprintf('%5.0f \t %5.0f \t %5.0f \t %5.0f \t %5.0f \t %6.0f \t
%5.0f \t %5.0f \t %5.0f \t %5.0f \t %6.0f\n',
node,wake,proc,csma,trans,rec,rxtx,wait,gtslp,ptran,slp);

 200

 fprintf(fileID,'%5.0f \t %5.0f \t %5.0f \t %5.0f \t %6.0f \t %5.0f
\t %5.0f \t %5.0f \t %5.0f \t %5.0f \t %6.0f\n',
node,wake,proc,csma,trans,rec,rxtx,wait,gtslp,ptran,slp);

end

fprintf('\nEnergy used by each node \n Node# \t\t Total mW * ms \t\t
Total mW/ms \n');
fprintf(fileID,'\nEnergy used by each node \n Node# \t\t Total mW * ms
\t\t Total mW/ms \n');
for n = 1:26
 fprintf('%i \t\t %10.0f \t\t %3.2f\n',n,total(n),totalms(n));
 fprintf(fileID,'%i \t\t %10.0f \t\t
%3.2f\n',n,total(n),totalms(n));
end

end

%%%
% aes %
% Obtained/Adapted from: %
%
http://radio.feld.cvut.cz/personal/matejka/wiki/doku.php?id=root:en:pro
jects %
% Stepan Matejka, 2011, matejka[at]feld.cvut.cz %
% $Revision: 1.1.0 $ $Date: 2011/11/20 $ %
%%%

function [output] = aes(s, oper, mode, input, iv, sbit)
% AES Encrypt/decrypt array of bytes by AES.
% output = aes(s, oper, mode, input, iv, sbit)
% Encrypt/decrypt array of bytes by AES-128, AES-192, AES-256.
% All NIST SP800-38A cipher modes supported (e.g. ECB, CBC, OFB, CFB,
CTR).
% Usage example: out = aesdecrypt(s, 'dec', 'ecb', data)
% s: AES structure (generated by aesinit)
% oper: operation:
% 'e', 'enc', 'encrypt', 'E',... = encrypt
% 'd', 'dec', 'decrypt', 'D',... = decrypt
% mode: operation mode
% 'ecb' = Electronic Codebook Mode
% 'cbc' = Cipher Block Chaining Mode
% 'cfb' = Cipher Feedback Mode
% 'ofb' = Output Feedback Mode
% 'ctr' = Counter Mode
% For counter mode you need external
AES_GET_COUNTER()
% counter function.
% input: plaintext/ciphertext byte-vector with length
% multiple of 16

 201

% iv: initialize vector - some modes need it
% ending initialize vector is stored in s.iv, so you
% can use aes() repetitively to encode/decode
% large vector:
% out = aes(s, 'enc', 'cbc', input1, iv);
% out = [out aes(s, 'enc', 'cbc', input1, s.iv)];
% ...
% sbit: bit-width parameter for CFB mode
% output: ciphertext/plaintext byte-vector
%
% See
% Morris Dworkin, Recommendation for Block Cipher Modes of Operation
% Methods and Techniques
% NIST Special Publication 800-38A, 2001 Edition
% for details.

% Stepan Matejka, 2011, matejka[at]feld.cvut.cz
% $Revision: 1.1.0 $ $Date: 2011/10/12 $

error(nargchk(4, 6, nargin));

validateattributes(s, {'struct'}, {});
validateattributes(oper, {'char'}, {});
validateattributes(mode, {'char'}, {});
validateattributes(input, {'numeric'}, {'real', 'vector', '>=', 0, '<',
256});
if (nargin >= 5)
 validateattributes(iv, {'numeric'}, {'real', 'vector', '>=', 0,
'<', 256});
if (length(iv) ~= 16)
 error('Length of ''iv'' must be 16.');
end
end
if (nargin >= 6)
 validateattributes(sbit, {'numeric'}, {'real', 'scalar', '>=', 1,
'<=', 128});
end

if (mod(length(input), 16))
 error('Length of ''input'' must be multiple of 16.');
end

switch lower(oper)
case {'encrypt', 'enc', 'e'}
 oper = 0;
case {'decrypt', 'dec', 'd'}
 oper = 1;
otherwise
 error('Bad ''oper'' parameter.');
end

blocks = length(input)/16;
input = input(:);

 202

switch lower(mode)

case {'ecb'}
% Electronic Codebook Mode
% ------------------------
 output = zeros(1,length(input));
 idx = 1:16;
for i = 1:blocks
if (oper)
% decrypt
 output(idx) = aesdecrypt(s,input(idx));
else
% encrypt
 output(idx) = aesencrypt(s,input(idx));
end
 idx = idx + 16;
end

case {'cbc'}
% Cipher Block Chaining Mode
% --------------------------
if (nargin < 5)
 error('Missing initialization vector ''iv''.');
end
 output = zeros(1,length(input));
 ob = iv;
 idx = 1:16;
for i = 1:blocks
if (oper)
% decrypt
 in = input(idx);
 output(idx) = bitxor(ob(:), aesdecrypt(s,in)');
 ob = in;
else
% encrypt
 ob = bitxor(ob(:), input(idx));
 ob = aesencrypt(s, ob);
 output(idx) = ob;
end
 idx = idx + 16;
end
% store iv for block passing
 s.iv = ob;

case {'cfb'}
% Cipher Feedback Mode
% --------------------
% Special mode with bit manipulations
% sbit = 1..128
if (nargin < 6)
 error('Missing ''sbit'' parameter.');
end
% get number of bits
 bitlen = 8*length(input);
% loop counter

 203

 rounds = round(bitlen/sbit);
% check
if (rem(bitlen, sbit))
 error('Message length in bits is not multiple of
''sbit''.');
end
% convert input to bitstream
 inputb = reshape(de2bi(input,8,2,'left-msb')',1,bitlen);
% preset init. vector
 ib = iv;
 ibb = reshape(de2bi(ib,8,2,'left-msb')',1,128);
% preset output binary stream
 outputb = zeros(size(inputb));
for i = 1:rounds
 iba = aesencrypt(s, ib);
% convert to bit, MSB first
 ibab = reshape(de2bi(iba,8,2,'left-msb')',1,128);
% strip only sbit MSB bits
% this goes to xor
 ibab = ibab(1:sbit);
% strip bits from input
 inpb = inputb((i - 1)*sbit + (1:sbit));
% make xor
 outb = bitxor(ibab, inpb);
% write to output
 outputb((i - 1)*sbit + (1:sbit)) = outb;
if (oper)
% decrypt
% prepare new iv - bit shift
 ibb = [ibb((1 + sbit):end) inpb];
else
% encrypt
% prepare new iv - bit shift
 ibb = [ibb((1 + sbit):end) outb];
end
% back to byte ary
 ib = bi2de(vec2mat(ibb,8),'left-msb');
% loop
end
 output = bi2de(vec2mat(outputb,8),'left-msb');
% store iv for block passing
 s.iv = ib;

case {'ofb'}
% Output Feedback Mode
% --------------------
if (nargin < 5)
 error('Missing initialization vector ''iv''.');
end
 output = zeros(1,length(input));
 ib = iv;
 idx = 1:16;
for i = 1:blocks
% encrypt, decrypt
 ib = aesencrypt(s, ib);

 204

 output(idx) = bitxor(ib(:), input(idx));
 idx = idx + 16;
end
% store iv for block passing
 s.iv = ib;

case {'ctr'}
% Counter Mode
% ------------
if (nargin < 5)
 iv = 1;
end
 output = zeros(1,length(input));
 idx = 1:16;
for i = (iv):(iv + blocks - 1)
 ib = AES_GET_COUNTER(i);
 ib = aesencrypt(s, ib);
 output(idx) = bitxor(ib(:), input(idx));
 idx = idx + 16;
end
 s.iv = iv + blocks;

otherwise
 error('Bad ''oper'' parameter.');
end

% ---

% end of file

%%%
% AES_GET_COUNTER %
% Obtained/Adapted from: %
%
http://radio.feld.cvut.cz/personal/matejka/wiki/doku.php?id=root:en:pro
jects %
% Stepan Matejka, 2011, matejka[at]feld.cvut.cz %
% $Revision: 1.1.0 $ $Date: 2011/11/20 $ %
%%%

function [out] = AES_GET_COUNTER(i)
% AES_GET_COUNTER Generates counter for aes.m - an example.
% Example function implemented to simulate counter for aestest.
% Change this function to correspond to your requirements.
% i: counter call number; 1, 2, 3,...
% out: counter value for given counter call

% Stepan Matejka, 2011, matejka[at]feld.cvut.cz
% $Revision: 1.1.0 $ $Date: 2011/10/12 $

global counter;

 205

switch (i)
case 1
 out = counter;
case 2
 counter(15:16) = [255 0];
 out = counter;
case 3
 counter(15:16) = [255 1];
 out = counter;
case 4
 counter(15:16) = [255 2];
 out = counter;
otherwise
 error('Index out of bounds.');
end

% ---

% end of file

%%%
% aesdecrypt %
% Obtained/Adapted from: %
%
http://radio.feld.cvut.cz/personal/matejka/wiki/doku.php?id=root:en:pro
jects %
% Stepan Matejka, 2011, matejka[at]feld.cvut.cz %
% $Revision: 1.1.0 $ $Date: 2011/11/20 $ %
%%%

function [out] = aesdecrypt(s, in)
% AESDECRYPT Decrypt 16-bytes vector.
% Usage: out = aesdecrypt(s, in)
% s: AES structure
% in: input 16-bytes vector (ciphertext)
% out: output 16-bytes vector (plaintext)

% Stepan Matejka, 2011, matejka[at]feld.cvut.cz
% $Revision: 1.1.0 $ $Date: 2011/10/12 $

if (nargin ~= 2)
 error('Bad number of input arguments.');
end

validateattributes(s, {'struct'}, {});
validateattributes(in, {'numeric'}, {'real', 'vector', '>=', 0, '<',
256});

 206

% copy input to local
% 16 -> 4 x 4
state = reshape(in, 4, 4);
% Initial round
% AddRoundKey keyexp(s.rounds*4 + (1:4))
state = bitxor(state, (s.keyexp(s.rounds*4 + (1:4), :))');
% Loop over (s.rounds - 1) rounds
for i = (s.rounds - 1):-1:1
% ShiftRows
 state = shift_rows(state, 1);
% SubBytes - lookup table
 state = s.inv_s_box(state + 1);
% AddRoundKey keyexp(i*4 + (1:4))
 state = bitxor(state, (s.keyexp((1:4) + 4*i, :))');
% MixColumns
 state = mix_columns(state, s);

end

% Final round
% ShiftRows
state = shift_rows(state, 1);
% SubBytes - lookup table
state = s.inv_s_box(state + 1);
% AddRoundKey keyexp(1:4)
state = bitxor(state, (s.keyexp(1:4, :))');

% copy local to output
% 4 x 4 -> 16
out = reshape(state, 1, 16);

% ---

function out = mix_columns(in, s)
% Each column of the state is multiplied with a fixed polynomial
mod_pol

% Slow version
% out = zeros(size(in));
% for col = 1:4
% for row = 1:4
% % for each element
% temp = 0;
% for i = 1:4
% % Multiplication in a finite field of
% % row vector of poly_mat and
% % column vector of the in
% % finally xor
% temp = bitxor(temp,...
% poly_mult(s.inv_poly_mat(row, i),...
% in(i, col),...
% s.mod_pol, s.aes_logt,s.aes_ilogt));
% end
% % place to out

 207

% out(row, col) = temp;
% end
% end

% Faster implementation
% out = zeros(size(in));
% for col = 1:4
% temp = poly_mult(14,in(1,col),s.mod_pol,s.aes_logt,s.aes_ilogt);
% temp = bitxor(temp,
poly_mult(11,in(2,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% temp = bitxor(temp,
poly_mult(13,in(3,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% out(1,col) = bitxor(temp,
poly_mult(9,in(4,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% temp = poly_mult(9,in(1,col),s.mod_pol,s.aes_logt,s.aes_ilogt);
% temp = bitxor(temp,
poly_mult(14,in(2,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% temp = bitxor(temp,
poly_mult(11,in(3,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% out(2,col) = bitxor(temp,
poly_mult(13,in(4,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% temp = poly_mult(13,in(1,col),s.mod_pol,s.aes_logt,s.aes_ilogt);
% temp = bitxor(temp,
poly_mult(9,in(2,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% temp = bitxor(temp,
poly_mult(14,in(3,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% out(3,col) = bitxor(temp,
poly_mult(11,in(4,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% temp = poly_mult(11,in(1,col),s.mod_pol,s.aes_logt,s.aes_ilogt);
% temp = bitxor(temp,
poly_mult(13,in(2,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% temp = bitxor(temp,
poly_mult(9,in(3,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% out(4,col) = bitxor(temp,
poly_mult(14,in(4,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% end

% Faster faster implementation
% out = zeros(size(in));
% for col = 1:4
% temp = s.mix_col14(in(1,col) + 1);
% temp = bitxor(temp, s.mix_col11(in(2,col) + 1));
% temp = bitxor(temp, s.mix_col13(in(3,col) + 1));
% out(1,col) = bitxor(temp, s.mix_col9(in(4,col) + 1));
% temp = s.mix_col9(in(1,col) + 1);
% temp = bitxor(temp, s.mix_col14(in(2,col) + 1));
% temp = bitxor(temp, s.mix_col11(in(3,col) + 1));
% out(2,col) = bitxor(temp, s.mix_col13(in(4,col) + 1));
% temp = s.mix_col13(in(1,col) + 1);
% temp = bitxor(temp, s.mix_col9(in(2,col) + 1));
% temp = bitxor(temp, s.mix_col14(in(3,col) + 1));
% out(3,col) = bitxor(temp, s.mix_col11(in(4,col) + 1));
% temp = s.mix_col11(in(1,col) + 1);
% temp = bitxor(temp, s.mix_col13(in(2,col) + 1));
% temp = bitxor(temp, s.mix_col9(in(3,col) + 1));

 208

% out(4,col) = bitxor(temp, s.mix_col14(in(4,col) + 1));
% end

% Faster faster faster implementation
% slice1 = zeros(4,4);
% slice2 = slice1;
% slice3 = slice1;
% slice4 = slice1;
% for col = 1:4
% slice1(1,col) = s.mix_col14(in(1,col) + 1);
% slice2(1,col) = s.mix_col11(in(2,col) + 1);
% slice3(1,col) = s.mix_col13(in(3,col) + 1);
% slice4(1,col) = s.mix_col9(in(4,col) + 1);
% slice1(2,col) = s.mix_col9(in(1,col) + 1);
% slice2(2,col) = s.mix_col14(in(2,col) + 1);
% slice3(2,col) = s.mix_col11(in(3,col) + 1);
% slice4(2,col) = s.mix_col13(in(4,col) + 1);
% slice1(3,col) = s.mix_col13(in(1,col) + 1);
% slice2(3,col) = s.mix_col9(in(2,col) + 1);
% slice3(3,col) = s.mix_col14(in(3,col) + 1);
% slice4(3,col) = s.mix_col11(in(4,col) + 1);
% slice1(4,col) = s.mix_col11(in(1,col) + 1);
% slice2(4,col) = s.mix_col13(in(2,col) + 1);
% slice3(4,col) = s.mix_col9(in(3,col) + 1);
% slice4(4,col) = s.mix_col14(in(4,col) + 1);
% end
% out = bitxor(bitxor(bitxor(slice1, slice2), slice3), slice4);

% Faster faster faster faster implementation
out = bitxor(bitxor(bitxor(...
 [s.mix_col14(in(1,1:4) + 1); s.mix_col9(in(1,1:4) + 1);
s.mix_col13(in(1,1:4) + 1); s.mix_col11(in(1,1:4) + 1)],...
 [s.mix_col11(in(2,1:4) + 1); s.mix_col14(in(2,1:4) + 1);
s.mix_col9(in(2,1:4) + 1); s.mix_col13(in(2,1:4) + 1)]),...
 [s.mix_col13(in(3,1:4) + 1); s.mix_col11(in(3,1:4) + 1);
s.mix_col14(in(3,1:4) + 1); s.mix_col9(in(3,1:4) + 1)]),...
 [s.mix_col9(in(4,1:4) + 1); s.mix_col13(in(4,1:4) + 1);
s.mix_col11(in(4,1:4) + 1); s.mix_col14(in(4,1:4) + 1)]);

% ---

function p = poly_mult(a, b, mod_pol, aes_logt, aes_ilogt)
% Multiplication in a finite field

% Old slow implementation
% p = 0;
% for counter = 1:8
% if (rem(b,2))
% p = bitxor(p,a);
% b = (b - 1)/2;
% else
% b = b/2;
% end
% a = 2*a;
% if (a>255)

 209

% a = bitxor(a,mod_pol);
% end
% end

% Faster implementaion
if (a && b)
 p = aes_ilogt(mod((aes_logt(a + 1) + aes_logt(b + 1)), 255) + 1);
else
 p = 0;
end

% ---

function out = shift_rows(in, dir)
% ShiftRows cyclically shift the rows of the 4 x 4 matrix.
%
% dir = 0 (to left)
% | 1 2 3 4 |
% | 2 3 4 1 |
% | 3 4 1 2 |
% | 4 1 2 3 |
%
% dir ~= 0 (to right)
% | 1 2 3 4 |
% | 4 1 2 3 |
% | 3 4 1 2 |
% | 2 3 4 1 |
%

if (dir == 0)
% left
% use linear indexing in 2d array
 out = reshape(in([1 6 11 16 5 10 15 4 9 14 3 8 13 2 7 12]),4,4);
% old safe method
% temp = reshape(in,16,1);
% temp = temp([1 6 11 16 5 10 15 4 9 14 3 8 13 2 7 12]);
% out = reshape(temp,4,4);
else
% right
% use linear indexing in 2d array
 out = reshape(in([1 14 11 8 5 2 15 12 9 6 3 16 13 10 7 4]),4,4);
% old safe method
% temp = reshape(in,16,1);
% temp = temp([1 14 11 8 5 2 15 12 9 6 3 16 13 10 7 4]);
% out = reshape(temp,4,4);
end

% ---

% end of file

%%%

 210

% aesencrypt %
% Obtained/Adapted from: %
%
http://radio.feld.cvut.cz/personal/matejka/wiki/doku.php?id=root:en:pro
jects %
% Stepan Matejka, 2011, matejka[at]feld.cvut.cz %
% $Revision: 1.1.0 $ $Date: 2011/11/20 $ %
%%%

function [out] = aesencrypt(s, in)
% AESENCRYPT Encrypt 16-bytes vector.
% Usage: out = aesencrypt(s, in)
% s: AES structure
% in: input 16-bytes vector (plaintext)
% out: output 16-bytes vector (ciphertext)

% Stepan Matejka, 2011, matejka[at]feld.cvut.cz
% $Revision: 1.1.0 $ $Date: 2011/10/12 $

if (nargin ~= 2)
 error('Bad number of input arguments.');
end

validateattributes(s, {'struct'}, {});
validateattributes(in, {'numeric'}, {'real', 'vector', '>=', 0, '<',
256});

% copy input to local
% 16 -> 4 x 4
state = reshape(in, 4, 4);

% Initial round
% AddRoundKey keyexp(1:4)
state = bitxor(state, (s.keyexp(1:4, :))');

% Loop over (s.rounds - 1) rounds
for i = 1:(s.rounds - 1)
% SubBytes - lookup table
 state = s.s_box(state + 1);
% ShiftRows
 state = shift_rows(state, 0);
% MixColumns
 state = mix_columns(state, s);
% AddRoundKey keyexp(i*4 + (1:4))
 state = bitxor(state, (s.keyexp((1:4) + 4*i, :))');
end

% Final round
% SubBytes - lookup table
state = s.s_box(state + 1);
% ShiftRows
state = shift_rows(state, 0);
% AddRoundKey keyexp(4*s.rounds + (1:4))
state = bitxor(state, (s.keyexp(4*s.rounds + (1:4), :))');

 211

% copy local to output
% 4 x 4 -> 16
out = reshape(state, 1, 16);

% ---

function out = mix_columns(in, s)
% Each column of the state is multiplied with a fixed polynomial
mod_pol

% Slow version
% out = zeros(size(in));
% for col = 1:4
% for row = 1:4
% % for each element
% temp = 0;
% for i = 1:4
% % Multiplication in a finite field of
% % row vector of poly_mat and
% % column vector of the in
% % finally xor
% temp = bitxor(temp,...
% poly_mult(s.poly_mat(row, i),...
% in(i, col),...
% s.mod_pol, s.aes_logt,s.aes_ilogt));
% end
% % place to out
% out(row, col) = temp;
% end
% end

% Faster implementation
% out = zeros(size(in));
% for col = 1:4
% temp = bitxor(in(3,col),in(4,col));
% temp = bitxor(temp,
poly_mult(2,in(1,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% out(1,col) = bitxor(temp,
poly_mult(3,in(2,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% temp = bitxor(in(1,col),in(4,col));
% temp = bitxor(temp,
poly_mult(2,in(2,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% out(2,col) = bitxor(temp,
poly_mult(3,in(3,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% temp = bitxor(in(1,col),in(2,col));
% temp = bitxor(temp,
poly_mult(2,in(3,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% out(3,col) = bitxor(temp,
poly_mult(3,in(4,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% temp = bitxor(in(2,col),in(3,col));
% temp = bitxor(temp,
poly_mult(3,in(1,col),s.mod_pol,s.aes_logt,s.aes_ilogt));
% out(4,col) = bitxor(temp,
poly_mult(2,in(4,col),s.mod_pol,s.aes_logt,s.aes_ilogt));

 212

% end

% Faster faster implementation
% out = zeros(size(in));
% for col = 1:4
% temp = bitxor(in(3,col),in(4,col));
% temp = bitxor(temp, s.mix_col2(in(1,col) + 1));
% out(1,col) = bitxor(temp, s.mix_col3(in(2,col) + 1));
% temp = bitxor(in(1,col),in(4,col));
% temp = bitxor(temp, s.mix_col2(in(2,col) + 1));
% out(2,col) = bitxor(temp, s.mix_col3(in(3,col) + 1));
% temp = bitxor(in(1,col),in(2,col));
% temp = bitxor(temp, s.mix_col2(in(3,col) + 1));
% out(3,col) = bitxor(temp, s.mix_col3(in(4,col) + 1));
% temp = bitxor(in(2,col),in(3,col));
% temp = bitxor(temp, s.mix_col3(in(1,col) + 1));
% out(4,col) = bitxor(temp, s.mix_col2(in(4,col) + 1));
% end

% Faster faster faster implementation
% slice1 = zeros(4,4);
% slice2 = slice1;
% slice3 = slice1;
% slice4 = slice1;
% for col = 1:4
% slice1(1,col) = in(3,col);
% slice2(1,col) = in(4,col);
% slice3(1,col) = s.mix_col2(in(1,col) + 1);
% slice4(1,col) = s.mix_col3(in(2,col) + 1);
% slice1(2,col) = in(1,col);
% slice2(2,col) = in(4,col);
% slice3(2,col) = s.mix_col2(in(2,col) + 1);
% slice4(2,col) = s.mix_col3(in(3,col) + 1);
% slice1(3,col) = in(1,col);
% slice2(3,col) = in(2,col);
% slice3(3,col) = s.mix_col2(in(3,col) + 1);
% slice4(3,col) = s.mix_col3(in(4,col) + 1);
% slice1(4,col) = in(2,col);
% slice2(4,col) = in(3,col);
% slice3(4,col) = s.mix_col3(in(1,col) + 1);
% slice4(4,col) = s.mix_col2(in(4,col) + 1);
% end
% out = bitxor(bitxor(bitxor(slice1, slice2), slice3), slice4);

% Faster faster faster faster implementation
out = bitxor(bitxor(bitxor([in(3,1:4); in(1,1:4); in(1,1:4);
in(2,1:4)],...
 [in(4,1:4); in(4,1:4); in(2,1:4); in(3,1:4)]),...
 [s.mix_col2(in(1,1:4) + 1); s.mix_col2(in(2,1:4) + 1);
s.mix_col2(in(3,1:4) + 1); s.mix_col3(in(1,1:4) + 1)]),...
 [s.mix_col3(in(2,1:4) + 1); s.mix_col3(in(3,1:4) + 1);
s.mix_col3(in(4,1:4) + 1); s.mix_col2(in(4,1:4) + 1)]);

% ---

 213

function p = poly_mult(a, b, mod_pol, aes_logt, aes_ilogt)
% Multiplication in a finite field

% Old slow implementation
% p = 0;
% for counter = 1:8
% if (rem(b,2))
% p = bitxor(p,a);
% b = (b - 1)/2;
% else
% b = b/2;
% end
% a = 2*a;
% if (a>255)
% a = bitxor(a,mod_pol);
% end
% end

% Faster implementaion
if (a && b)
 p = aes_ilogt(mod((aes_logt(a + 1) + aes_logt(b + 1)), 255) + 1);
else
 p = 0;
end

% ---

function out = shift_rows(in, dir)
% ShiftRows cyclically shift the rows of the 4 x 4 matrix.
%
% dir = 0 (to left)
% | 1 2 3 4 |
% | 2 3 4 1 |
% | 3 4 1 2 |
% | 4 1 2 3 |
%
% dir ~= 0 (to right)
% | 1 2 3 4 |
% | 4 1 2 3 |
% | 3 4 1 2 |
% | 2 3 4 1 |
%

if (dir == 0)
% left
% use linear indexing in 2d array
 out = reshape(in([1 6 11 16 5 10 15 4 9 14 3 8 13 2 7 12]),4,4);
% old safe method
% temp = reshape(in,16,1);
% temp = temp([1 6 11 16 5 10 15 4 9 14 3 8 13 2 7 12]);
% out = reshape(temp,4,4);
else
% right
% use linear indexing in 2d array
 out = reshape(in([1 14 11 8 5 2 15 12 9 6 3 16 13 10 7 4]),4,4);

 214

% old safe method
% temp = reshape(in,16,1);
% temp = temp([1 14 11 8 5 2 15 12 9 6 3 16 13 10 7 4]);
% out = reshape(temp,4,4);
end

% ---

% end of file

%%%
% aesinfo %
% Obtained/Adapted from: %
%
http://radio.feld.cvut.cz/personal/matejka/wiki/doku.php?id=root:en:pro
jects %
% Stepan Matejka, 2011, matejka[at]feld.cvut.cz %
% $Revision: 1.1.0 $ $Date: 2011/11/20 $ %
%%%

function [output] = aesinfo(s, verb)
% AESINFO Display info about AES setting in AES structure.
% Usage: out = aesinfo(s)
% s: AES structure (generated by aesinit)
% verb: verbose = 0 ... only key displayed
% verbose = 1 ... print all vectors/tables, words
% in little-endian byte order
% verbose = 2 ... print all vectors/tables, words
% in big-endian byte order
% output: AES key length (128,192, or 256 bits)

% Stepan Matejka, 2011, matejka[at]feld.cvut.cz
% $Revision: 1.1.0 $ $Date: 2011/10/12 $

error(nargchk(1, 2, nargin));

validateattributes(s, {'struct'}, {});
if (nargin >= 2)
 validateattributes(verb, {'numeric'}, {'real', 'scalar', '>=', 0,
'<=', 2});
else
 verb = 0;
end

% to screen
ID = 1;

fprintf(ID, 'AES Type: AES-%d\n', s.length);
fprintf(ID, 'AES Rounds: %d\n', s.rounds);
fprintf(ID, 'GF(2^8) modulo poly: 0x%03x\n', s.mod_pol);
fprintf(ID, 'Key (%d bits/%d bytes):\n', s.length, s.bytes);

 215

printaryh(ID, 'key8', s.key, 1, 8, 1);
if (verb)
 printaryh(ID, 'key16', s.key, 2, 8, verb);
 printaryh(ID, 'key32', s.key, 4, 4, verb);
 fprintf(ID, 'Expanded Key (%d bytes/%d words):\n', numel(s.keyexp),
numel(s.keyexp)/4);
 printaryh(ID, 'expkey8', s.keyexp', 1, 8, verb);
 printaryh(ID, 'expkey32', s.keyexp', 4, 4, verb);
 fprintf(ID, 'Log table (%d bytes):\n', numel(s.aes_logt));
 printaryh(ID, 'logt8', s.aes_logt, 1, 8, verb);
 fprintf(ID, 'Inverse log table (%d bytes):\n', numel(s.aes_ilogt));
 printaryh(ID, 'ilogt8', s.aes_ilogt, 1, 8, verb);
 fprintf(ID, 'S-Box table (%d bytes):\n', numel(s.s_box));
 printaryh(ID, 'sbox8', s.s_box, 1, 8, verb);
 fprintf(ID, 'Inverse S-Box table (%d bytes):\n',
numel(s.inv_s_box));
 printaryh(ID, 'isbox8', s.inv_s_box, 1, 8, verb);
if (0)
 fprintf(ID, 'Mix-col 2 (%d bytes):\n', numel(s.mix_col2));
 printaryh(ID, 'mixcol2', s.mix_col2, 1, 8, verb);
 fprintf(ID, 'Mix-col 3 (%d bytes):\n', numel(s.mix_col3));
 printaryh(ID, 'mixcol3', s.mix_col3, 1, 8, verb);
 fprintf(ID, 'Mix-col 9 (%d bytes):\n', numel(s.mix_col9));
 printaryh(ID, 'mixcol9', s.mix_col9, 1, 8, verb);
 fprintf(ID, 'Mix-col 11 (%d bytes):\n', numel(s.mix_col11));
 printaryh(ID, 'mixcol11', s.mix_col11, 1, 8, verb);
 fprintf(ID, 'Mix-col 13 (%d bytes):\n', numel(s.mix_col13));
 printaryh(ID, 'mixcol13', s.mix_col13, 1, 8, verb);
 fprintf(ID, 'Mix-col 14 (%d bytes):\n', numel(s.mix_col14));
 printaryh(ID, 'mixcol14', s.mix_col14, 1, 8, verb);
end
end
output = s.length;

% ---

function printaryh(ID, name, data, pack, ionline, verb)
% print byte ary data like C ary
if (verb == 0)
return;
end
data = data(:);
% pack:
switch (pack)
case 1
 items = length(data);
 vartype = 'u8';
 format = '0x%02x';
case 2
 items = length(data)/2;
 data = reshape(data,2,items)';
if (verb == 2)
 data = fliplr(data);
end
 data = sum(data.*repmat([1 256], items, 1), 2);

 216

 vartype = 'u16';
 format = '0x%04x';
case 4
 items = length(data)/4;
 data = reshape(data,4,items)';
if (verb == 2)
 data = fliplr(data);
end
 data = sum(data.*repmat([1 256 65536 65536*256], items, 1), 2);
 vartype = 'u32';
 format = '0x%08x';
otherwise
 error('Usupported pack parameter.')
end
fprintf(ID, '%s %s[%d] = {\n', vartype, name, items);
for i = 1:items
if (rem(i - 1, ionline) == 0)
 fprintf(ID,' ');
end
 fprintf(ID, format, data(i));
if (i == items)
 fprintf(ID,'};\n');
break;
end
if (rem(i, ionline) == 0)
 fprintf(ID,',\n');
else
 fprintf(ID,', ');
end
end

% ---

% end of file

%%%
% aesinit %
% Obtained/Adapted from: %
%
http://radio.feld.cvut.cz/personal/matejka/wiki/doku.php?id=root:en:pro
jects %
% Stepan Matejka, 2011, matejka[at]feld.cvut.cz %
% $Revision: 1.1.0 $ $Date: 2011/11/20 $ %
%%%

function s = aesinit(key)
% AESINIT Generate structure with s-boxes, expanded key, etc.
% Usage: s = aesinit([23 34 168 ... 39])
% key: 16 (AES-128), 24 (AES-192), and 32 (AES-256)
% items array with bytes of key
% s: AES structure for AES parameters and tables

 217

% Stepan Matejka, 2011, matejka[at]feld.cvut.cz
% $Revision: 1.1.0 $ $Date: 2011/10/12 $

validateattributes(key,...
 {'numeric'},...
 {'real', 'vector', '>=', 0, '<=', 255});

key = key(:);
lengthkey = length(key);

switch (lengthkey)
case 16
 rounds = 10;
case 24
 rounds = 12;
case 32
 rounds = 14;
otherwise
 error('Only AES-128, AES-192, and AES-256 are supported.');
end

% fill s structure
s = {};
s.key = key;
s.bytes = lengthkey;
s.length = lengthkey * 8;
s.rounds = rounds;
% irreducible polynomial for multiplication in a finite field 0x11b
% bin2dec('100011011');
s.mod_pol = 283;

% s-box method 1 (slow)
% ---------------------

% % multiplicative inverse table
% % first is zero, calculate rest
% inverse = zeros(1,256);
% for i = 2:256
% inverse(i) = find_inverse(i - 1, s.mod_pol);
% end
%
% % generate s-box
% s_box = zeros(1,256);
% for i = 1:256
% % affine transformation
% s_box(i) = aff_trans(inverse(i));
% end
% s.s_box = s_box;
%
% % generate inverse s-box
% inv_s_box(s_box(1:256) + 1) = (1:256) - 1;
% s.inv_s_box = inv_s_box;

% s-box method 2 (faster)

 218

% -----------------------

% first build logarithm lookup table and its inverse
aes_logt = zeros(1,256);
aes_ilogt = zeros(1,256);
gen = 1;
for i = 0:255
 aes_logt(gen + 1) = i;
 aes_ilogt(i + 1) = gen;
 gen = poly_mult(gen, 3, s.mod_pol);
end
% store log tables
s.aes_logt = aes_logt;
s.aes_ilogt = aes_ilogt;
% build s-box and its inverse
s_box = zeros(1,256);
loctable = [1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128];
for i = 0:255
if (i == 0)
 inv = 0;
else
 inv = aes_ilogt(255 - aes_logt(i + 1) + 1);
end
 temp = 0;
for bi = 0:7
 temp2 = sign(bitand(inv, loctable(bi + 1)));
 temp2 = temp2 + sign(bitand(inv, loctable(bi + 4 + 1)));
 temp2 = temp2 + sign(bitand(inv, loctable(bi + 5 + 1)));
 temp2 = temp2 + sign(bitand(inv, loctable(bi + 6 + 1)));
 temp2 = temp2 + sign(bitand(inv, loctable(bi + 7 + 1)));
 temp2 = temp2 + sign(bitand(99, loctable(bi + 1)));
if (rem(temp2,2))
 temp = bitor(temp, loctable(bi + 1));
end
end
 s_box(i + 1) = temp;
end
inv_s_box(s_box(1:256) + 1) = (0:255);
% table correction (must be)
s_box(1 + 1) = 124;
inv_s_box(124 + 1) = 1;
inv_s_box(99 + 1) = 0;
s.s_box = s_box;
s.inv_s_box = inv_s_box;

% tables for fast MixColumns
mix_col2 = zeros(1,256);
mix_col3 = mix_col2;
mix_col9 = mix_col2;
mix_col11 = mix_col2;
mix_col13 = mix_col2;
mix_col14 = mix_col2;
for i = 1:256
 mix_col2(i) = poly_mult(2, i - 1, s.mod_pol);
 mix_col3(i) = poly_mult(3, i - 1, s.mod_pol);

 219

 mix_col9(i) = poly_mult(9, i - 1, s.mod_pol);
 mix_col11(i) = poly_mult(11, i - 1, s.mod_pol);
 mix_col13(i) = poly_mult(13, i - 1, s.mod_pol);
 mix_col14(i) = poly_mult(14, i - 1, s.mod_pol);
end
s.mix_col2 = mix_col2;
s.mix_col3 = mix_col3;
s.mix_col9 = mix_col9;
s.mix_col11 = mix_col11;
s.mix_col13 = mix_col13;
s.mix_col14 = mix_col14;

% expanded key
s.keyexp = key_expansion(s.key, s.s_box, s.rounds, s.mod_pol,
s.aes_logt, s.aes_ilogt);

% poly & invpoly
s.poly_mat = [...
 2 3 1 1;...
 1 2 3 1;...
 1 1 2 3;...
 3 1 1 2];

s.inv_poly_mat =[...
 14 11 13 9;...
 9 14 11 13;...
 13 9 14 11;...
 11 13 9 14];

% end of aesinit.m
% ---

function p = poly_mult(a, b, mod_pol)
% Multiplication in a finite field
% For loop multiplication - slower than log/ilog tables
% but must be used for log/ilog tables generation

p = 0;
for counter = 1 : 8
if (rem(b, 2))
 p = bitxor(p, a);
 b = (b - 1)/2;
else
 b = b/2;
end
 a = 2*a;
if (a > 255)
 a = bitxor(a, mod_pol);
end
end

% ---

 220

function inv = find_inverse(in, mod_pol)
% Multiplicative inverse for an element a of a finite field
% very bad calculate & test method
% Not used in faster version

% loop over all possible bytes
for inv = 1 : 255
% calculate polynomial multiplication and test to be 1
if (1 == poly_mult(in, inv, mod_pol))
% we find it
break
end
end
inv = 0;

% ---

function out = aff_trans(in)
% Affine transformation over GF(2^8)
% Not used for faster s-box generation

% modulo polynomial for multiplication in a finite field
% bin2dec('100000001');
mod_pol = 257;

% multiplication polynomial
% bin2dec('00011111');
mult_pol = 31;

% addition polynomial
% bin2dec('01100011');
add_pol = 99;

% polynomial multiplication
temp = poly_mult(in, mult_pol, mod_pol);

% xor with addition polynomial
out = bitxor(temp, add_pol);

% ---

function expkey = key_expansion(key, s_box, rounds, mod_pol, aes_logt,
aes_ilogt)
% Expansion of key

% This is old version for AES-128 (192?, 256? not tested):
% rcon = ones(1,rounds);
% for i = 2:rounds
% rcon(i) = poly_mult(rcon(i - 1), 2, mod_pol);
% end
% % fill bytes 2, 3, and 4 by 0
% rcon = [rcon(:), zeros(rounds, 3)];
%
% kcol = length(key)/4;

 221

% expkey = (reshape(key, kcol, 4))';
% for i = (kcol + 1):(4*rounds + 4)
% % copy the previous row of the expanded key into a buffer
% temp = expkey(i - 1, :);
% % each fourth row
% if (mod(i, 4) == 1)
% % shift temp
% temp = temp([2 3 4 1]);
% % s-box transform
% temp = s_box(temp + 1);
% % compute the current round constant
% r = rcon((i - 1)/4, :);
% % xor
% temp = bitxor(temp, r);
% else
% if ((kcol > 6) && (mod(i, kcol) == 0))
% temp = s_box(temp);
% end
% end
% % generate new row of the expanded key
% expkey(i, :) = bitxor(expkey(i - 4, :), temp);
% end

% This is new faster version for all AES:
rcon = 1;
kcol = length(key)/4;
expkey = (reshape(key,4,kcol))';
% traverse for all rounds
for i = kcol:(4*(rounds + 1) - 1)
% copy the previous row of the expanded key into a buffer
 temp = expkey(i, :);
% each kcol row
if (mod(i, kcol) == 0)
% rotate word
 temp = temp([2 3 4 1]);
% s-box transform
 temp = s_box(temp + 1);
% xor
 temp(1) = bitxor(temp(1), rcon);
% new rcon
% 1. classic poly_mult
% rcon = poly_mult(rcon, 2, mod_pol);
% 2. or faster version with log/ilog tables
% note rcon is never zero here
% rcon = aes_ilogt(mod((aes_logt(rcon + 1) + aes_logt(2 + 1)), 255) +
1);
 rcon = aes_ilogt(mod((aes_logt(rcon + 1) + 25), 255) + 1);
else
if ((kcol > 6) && (mod(i, kcol) == 4))
 temp = s_box(temp + 1);
end
end
% generate new row of the expanded key
 expkey(i + 1, :) = bitxor(expkey(i - kcol + 1, :), temp);
end

 222

% ---

% end of file

%%%
% Encryption_Decryption %
% Obtained/Adapted from: %
%
http://radio.feld.cvut.cz/personal/matejka/wiki/doku.php?id=root:en:pro
jects %
% Stepan Matejka, 2011, matejka[at]feld.cvut.cz %
% $Revision: 1.1.0 $ $Date: 2011/11/20 $ %
%%%

function Encryption_Decryption(PN, Type)
%modified version of code from :

global counter;
global Packet;
global Keys;
global Node_Address;
global ct1;
global Payload;
global MAC;
global MAC_Check;
global Payload_Out;
global MAC_F;

 Payload(1,1:128) = zeros(1,128);
 MAC_F(1,1:128) = zeros(1,128);
 MAC_Check(1,1:128) = zeros(1,128);

 st = 297;
 sst = st + 7;
 aa = 1;
for n = 1:16
 pt(n) = bi2de(Packet(PN,st:sst));
 st = st + 8;
 sst = st + 7;
end

for nn = 1:26
if Packet(PN,169:184) == Node_Address(nn,50:65)
 cc = 1;
 ccc = 8;
for nnn = 1:16
 key(nnn) = bi2de(Keys(nn,cc:ccc));
 cc = cc + 8;
 ccc = cc + 7;

 223

end
end
end

 s = aesinit(key);
 count = Packet(PN,169:296);
 MAC_Out = Packet(PN,865:992);
 st = 1;
 sst = st + 7;
 aa = 1;
for n = 1:16
 counter(n) = bi2de(count(st:sst));
 MAC_O(n) = bi2de(MAC_Out(st:sst));
 st = st + 8;
 sst = st + 7;
end

 ivh1 = {'00''00''00''00''00''00''00''00'...
'00''00''00''00''00''00''00''00'};
 iv1 = hex2dec(ivh1);

%__

if Type == 1
 ct1 = aes(s, 'enc', 'cbc', pt, iv1);
 pt(17:32) = ct1(1:16);

% MSG and IV go in
 ct = aes(s, 'enc', 'ctr', pt);
% Output is the cipher Text to be used as payload
 nn = 1;
 nnn = 8;
 p = 17;

for n = 1:16
 Payload(PN,nn:nnn) = de2bi(ct(n),8);
 MAC(nn:nnn) = de2bi(ct(p),8);
 nn = nn + 8;
 nnn = nn + 7;
 p = p + 1;
end

elseif Type == 2

 pt(17:32) = MAC_O;
 outm(PN,1:16) = MAC_O;
% outp(PN,1:16) = pt(1:16);
 ct2 = aes(s, 'dec', 'ctr', pt);
% Gives cipher text

 224

 p = 17;
 nn = 1;
 nnn = 8;
for n = 1:16
 Payload_Out(PN,nn:nnn) = de2bi(ct2(n),8);
 MAC_F(PN,nn:nnn) = de2bi(ct2(p),8);
 nn = nn + 8;
 nnn = nn + 7;
 p = p + 1;
end
 nn = 1;
 nnn = 8;
 check = aes(s, 'enc', 'cbc', ct2(1:16), iv1);
for n = 1:16
 MAC_Check(PN,nn:nnn) = de2bi(check(n),8);
 nn = nn + 8;
 nnn = nn + 7;
end

end

end

%%%
% crc16 %
% Obtained/Adapted from: %
% https://macroware.wordpress.com/2011/05/21/crc-calculation/ %
%%%

function [resto] = crc16(h)
%Variable initialization (CRC16 polynomial) in format
% [1 g1X g2X^2 g3X^3 g4X^4 g5X^5 g6X^6 g7X^7 g8X^8 g9X^9 g10X^10
g11X^11 g12X^12 g13X^13 g14X^14 g15X^15 1X^16]
gx=[1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1];
crcSize = 16;
% message ux (lsb first)
ux = h;
%ux = [0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0]
msgSize = 1000;
bx=[zeros(1,16)];
% shift the message through the generator polynomial to determine the
% remainder bx
for i=1:msgSize
 feedback = xor(ux(i), bx(16));
for j=crcSize:-1:2
if (gx(j) == 1)
 bx(j) = xor(bx(j-1), feedback);
else
 bx(j) = bx(j-1);
end
end

 225

 bx(1) = feedback;
end
%convert the resulting remainder to a hex representation
remainder = uint16(0);
j = crcSize;
for i=0:crcSize-1
 remainder = remainder + bx(j) * 2^i;
 j = j - 1;
end
resto = de2bi(remainder,16);
end

 226

THIS PAGE INTENTIONALLY LEFT BLANK

 227

LIST OF REFERENCES

[1] K. White and P. Thulasiraman, “Energy efficient cross layer load balancing in
tactical multigateway wireless sensor networks,” in Proc. Of IEEE International
Inter-Disciplinary Conference on Cognitive Method in Situation Awareness and
Decision Support , 2015, pp.193–199.

[2] P. N. Edwards, “We defend every place: Building the cold war world,” in The
Closed World: Computers and the Politics of Discourse in Cold War
America.Cambridge, MA: MIT Press, 1996, pp. 3–8.

[3] Unattended Ground Sensor Set AN/GSQ-257 Technical Manual, TM 09632A-OI,
Washington, DC: U.S. Marine Corps, 2008.

[4] J Hui, D Culler, and S Chakrabarti, “6LoWPAN: Incorporating IEEE 802.15. 4
into the IP architecture” in Internet Protocol for Smart Objects Alliance, 2009.

[5] J. Granjal, E. Monteiro, and J. Sa Silva, “Security for the Internet of things: a
survey of existing protocols and open research issues,”in IEEE Communication
Surveys & Tutorials, vol. 17, pp.1294–1312, Third Quarter, 2015.

[6] Jonas Olsson. (2014) 6LoWPAN demystified. [Online]. Available:
http://www.ti.com/lit/wp/swry013/swry013.pdf

[7] Sensor Mobile Monitor System AN/MSC-77 Technical Manual, TM 09856A-
10/1A, U.S. Marine Corps, Washington, DC, 2008.

[8] D. W. Courtney and P. Thulasiraman, “Implementation of secure 6LoWPAN
communications for tactical wireless sensor networks,” in IEEE Conference on
Computer Communications Workshops: IEEE Infocom MiseNet Workshop, San
Francisco, CA, 2016, pp. 962–967.

[9] A. Callanan and P. Thulasiraman, “Achieving sink node anonymity under energy
constraints in tactical wireless sensor networks,” in Proc. of IEEE International
Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and
Decision Support, 2015, pp.186–192.

[10] S. Lee, S. Lee, H. Song, and H. Lee, “Wireless sensor network design for tactical
military applications: remote large-scale environments,” in Proc. of IEEE Military
Communications Conference, 2009, pp. 911–917.

[11] H. Song, S. Lee, S. Lee, and H. Lee, “6LoWPAN-Based tactical wireless sensor
network architecture for remote large-scale random deployment scenarios,” in
Proc. of IEEE Military Communications Conference, 2009, pp.1–7.

 228

[12] P. Thulasiraman, “RPL routing for multigateway AMI networks under
interference constraints” in Proc. of IEEE International Conference on
Communications – Selected Areas in Communications Symposium, 2013, pp.
4477-4482.

[13] C. Hennebert and J. D. Santos, “Security protocols and privacy issues into
6LoWPAN stack: a synthesis,” in IEEE Internet of Things Journal, vol. 1, no. 5,
pp. 384–398, Oct. 2014.

[14] S. Raza, S. Duquennoy, and G. Selander, “Compression of IPsec AH and ESP
Headers for Constrained Environments (Draft),” pp.1–10, 2013, Sept. 2013.

[15] A. Rghioui, M. Bouhorma, and A. Benslimane, “Analytical study of security
aspects in 6LoWPAN networks,” in 5th International Conference on Information
and Communication Technology for the Muslim World, 2013, pp.1–5.

[16] E. Dulaney and C. Easttom, “Mastering TCP/IP,” in CompTIA Security+ Study
Guide, 6th ed. Indianapolis, IN: JW&S, ch . 3, pp. 77.

[17] Y. Lin, R. Hwang, and F. Baker, “Link Layer,” in Computer Networks: An Open
Source Approach, New York, NY: MGH Co, 2012, pp. 156–157, 173–175.

[18] National Security Agency (2015, Aug.). NSA Suite B Cryptography. Suite B
[Online]. Available: https://www.nsa.gov/ia/programs/suiteb_cryptography/.

[19] J. Hui and P. Thubert, Compression Format for IPv6 Datagrams over IEEE
802.15.4-Based Networks, Request For Comments (RFC): 6282, Sept. 2011.

[20] M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen, “How low energy
is Bluetooth low energy? Comparative measures with ZigBee/802.15.4,”WCNC
Workshop on Internet of Things Enabling Technologies, Embracing Machine-To-
Machine Communications and Beyond, 2012, pp. 232–237.

[21] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in wireless sensor
networks,” in Computer Networks, vol. 54, no. 17, pp. 2967–2978, Dec. 2010.

[22] (2011, May 21). CRC Calculation [Online]. Available:
https://macroware.wordpress.com/2011/05/21/crc-calculation/

[23] S. Matejka. (2011, November, 20). AES - AES-128, AES-192, and AES-256
encryption/decryption functions [Online]. Available:
http://radio.feld.cvut.cz/personal/matejka/wiki/doku.php?id=root:en:projects

 229

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

